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Multiphysics simulations often involve nonlinear components that are driven by internally 
generated or externally imposed random fluctuations. When used with a domain-
decomposition (DD) algorithm, such components have to be coupled in a way that 
both accurately propagates the noise between the subdomains and lends itself to a 
stable and cost-effective temporal integration. We develop a conservative DD approach 
in which tight coupling is obtained by using a Jacobian-free Newton–Krylov (JfNK) method 
with a generalized minimum residual iterative linear solver. This strategy is tested on a 
coupled nonlinear diffusion system forced by a truncated Gaussian noise at the boundary. 
Enforcement of path-wise continuity of the state variable and its flux, as opposed to 
continuity in the mean, at interfaces between subdomains enables the DD algorithm to 
correctly propagate boundary fluctuations throughout the computational domain. Reliance 
on a single Newton iteration (explicit coupling), rather than on the fully converged JfNK 
(implicit) coupling, may increase the solution error by an order of magnitude. Increase 
in communication frequency between the DD components reduces the explicit coupling’s 
error, but makes it less efficient than the implicit coupling at comparable error levels for 
all noise strengths considered. Finally, the DD algorithm with the implicit JfNK coupling 
resolves temporally-correlated fluctuations of the boundary noise when the correlation 
time of the latter exceeds some multiple of an appropriately defined characteristic diffusion 
time.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction and motivation

High-performance computing facilitates the simulation of ever more complex phenomena comprising multiple physical, 
chemical and/or biological processes that take place on a wide range of spatiotemporal scales. Many of these problems 
involve constituent processes that occur in separate spatial domains and influence each other through the interfaces be-
tween these domains. One example is conjugate heat transfer across a fluid–solid interface [1], which manifests itself in 
applications as diverse as gas turbine cooling [2] and vehicle entry and re-entry in planetary atmospheres [3].

Construction of a single discrete operator containing the different components and their interactions yields a “tight” 
coupling, which guarantees temporal synchronization of state variables across inter-component interfaces. Yet, this “mono-
lithic” [4] approach is intrusive (i.e., requires development of new software) and might become unfeasible for high-
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Fig. 1. A three-layer dense membrane configuration for hydrogen separation (not to scale).

dimensional systems. The alternative strategy of “component partitioning” or domain decomposition (DD) advances the 
components independently and employs a coupling method to exchange information at the interfaces. Deployment of DDs 
in high-performance computing facilitates an optimal distribution of the work load between the available processing cores 
(load balancing), while minimizing communication between cores acting on adjacent subdomains (communication schedul-
ing) [5]. The DD approach is nonintrusive, i.e., allows for a “black-box” implementation of existing (legacy) codes, but 
requires an iterative coupling to avoid desynchronization of the state variables computed with the individual components,1

which may significantly increase its computational cost.
Studies of the numerical properties of DD algorithms have led to nontrivial conclusions, which might be difficult to gen-

eralize. For instance, an otherwise unstable loose coupling used in one-dimensional simulations of fluid–solid-interactions 
can be made stable by enforcing Neumann boundary conditions for the structural calculation and Dirichlet boundary con-
ditions for the fluid solver [9]; and the use of a small number of iterations in a coupled linear diffusion problem leads to 
conditional or unconditional stability in a nonintuitive way when using a backward Euler solver in the subdomains [10]. 
Random fluctuations inside or on the boundary of a computational domain further affect the accuracy and performance of 
DD methods [11,12].

We focus on a highly nonlinear multiscale diffusion problem driven by a temporally correlated boundary noise. 
A nonlinear dependence of the diffusion coefficient on the state variable (concentration) poses a host of challenges not 
encountered in linear [11,12] and weakly nonlinear [12] problems. A computational testbed problem described in Sec-
tion 2—one-dimensional nonlinear diffusion in a composite solid forced by a truncated Gaussian noise at its left boundary—
represents production of ultra-pure hydrogen gas [13]. Section 3 contains a description of our DD algorithm, which uses a 
Jacobian-free Newton–Krylov (JfNK) method to tightly couple two explicit Euler diffusion solvers. In Section 4 we analyze 
the stability of the time advancement scheme in the presence of a temporally fluctuating boundary noise. In Section 5 we 
conduct a series of computational experiments to elucidate the numerical properties of our algorithm. A summary of our 
findings is reported in Section 6.

2. Problem formulation

Consider a state variable ρ(x, t) whose dynamics is governed by a one-dimensional nonlinear diffusion equation,

∂ρ

∂t
= ∂

∂x

[
D(ρ, x)

∂ρ

∂x

]
, x ∈ � ≡ (0, L), t > 0, (1a)

with the ρ-dependent diffusion coefficient D; this equation is defined on the simulation domain � ≡ (0, L) for times t > 0. 
While (1a) describes a large number of physical phenomena, we ground it in an application related to production of ultra-
pure hydrogen gas [13]. Thus, ρ(x, t) represents the concentration of atomic hydrogen (H) that diffuses through a dense 
composite metal membrane of thickness L. The latter is placed between streams of feed and sweep gases flowing in oppo-
site directions in order to extract H2 from the feed gas (for a typical configuration, see, e.g., [14] and Fig. 1). The membrane 
consists of a tantalum (Ta) layer �2 sandwiched between two palladium (Pd) layers �1 and �3 [15]. Palladium’s selec-
tive permeability to hydrogen [16] makes it suitable for use in hydrogen-separation membranes. To increase its structural 
stability, Pd has been alloyed with materials such as silver [17]. An alternative, and potentially superior approach, is the 
combination of Pd with refractory (group V) metals, such as Ta, into layered membranes [18]. Refractory metals have even 
higher bulk hydrogen permeabilities than Pd or its alloys [19], and are cheaper than Pd.

The diffusion coefficient of H in this composite is given by [20]

D(ρ, x) =
⎧⎨
⎩

DPd ≡ D int
Pd

[
f1(β) + f2(ρ)V Pdρ

1 − ρV Pd

kB T

]
for x ∈ �1 ∪ �3

DTa ≡ D int
Ta for x ∈ �2

(1b)

1 Examples of such a desynchronization due to the use of noniterative or “loosely” coupled algorithms, and methods to iteratively correct them, can be 
found in [6–8].
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