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We address the problem of estimating the relative entropy rate (RER) for two stochastic 
processes described by stochastic differential equations. For the case where the drift of 
one process is known analytically, but one has only observations from the second process, 
we use a variational bound on the RER to construct an estimator.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The Kullback–Leibler (KL) divergence or relative entropy plays an important role as an error measure in approximating 
one probability distribution by another. It appears implicitly in the free energy bound of the variational approximation in 
statistical mechanics. The variational approach has been adopted within the field of machine learning where it is used to 
approximate intractable posterior distributions in Bayesian inference. More recently, KL-divergence related cost functions 
have found applications to infinite dimensional path measures of stochastic processes. This includes e.g. work on optimal 
control problems [1–3], probabilistic inference [4,5] and rare event simulations [6]. The relative entropy rate (RER), i.e. the 
large time limit of the KL-divergence per time, plays an important role for uncertainty quantification and sensitivity analysis 
[7–9] of stochastic dynamics with applications to (bio)chemical reaction networks (see e.g. [10]). Finally, the RER has been 
used [11,12] to quantify the loss of information when a non-equilibrium model in statistical physics is approximated by a 
coarse-grained dynamics.

In this paper we address the problem of estimating the RER for stochastic differential equations from observations of 
the process. This rate can be expressed by the drift functions of the two processes and the stationary density of one of 
them. Its evaluation is nontrivial, when one path distribution (usually the one used for approximation) is characterised by 
an analytical expression for the drift, but the other distribution only via observations of the process.

The main contribution of the paper is a simple estimator (eq. (22)) for the RER which is valid for processes which 
satisfy a specific potential condition for the difference between the two drifts. The estimator is derived from a variational 
representation of the RER (eq. (11)), which involves a functional that is an expectation with respect to the stationary 
distribution of the process and which can be estimated from ergodic samples.
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Our work was motivated by estimators for log-probability densities [13,14] developed in the field of machine learning. 
Using a related variational method, we have constructed estimators for drift functions from the empirical distribution of 
data [15]. The application of these ideas to the estimation of relative entropy rates given in this paper is new.

The paper is organised as follows: Section two introduces relative entropy rates for stochastic differential equations. 
Section 3 gives a variational bound on the RER which depends on the stationary density of the process. Replacing this 
density by the empirical distribution of observations in section 4 is used to get a simple estimator within a parametric 
framework. Section 5 discusses the relation of the potential condition to optimal stochastic control. The performance of the 
estimator is illustrated on a simple one-dimensional double well problem in section 6. We conclude with an outlook and 
discussion in section 7. In the appendix we give a proof of a stochastic representation of our cost function.

2. The relative entropy rate for stochastic differential equations

We consider stochastic differential equations (SDE) for the dynamics of a d-dimensional diffusion process Xt ∈ Rd given 
by

dXt = g(Xt)dt + σ(Xt)dWt . (1)

The drift function g(·) ∈ Rd represents the deterministic part of the driving force and W is a k-dimensional (k ≤ d) vector 
of independent Wiener processes acting as a white noise source. The strength of the noise is determined by the state 
dependent d × k dimensional diffusion matrix σ(·).

The relative entropy or Kullback–Leibler divergence between the probability measures P g(X0:T ) and P f (X0:T ) for paths 
X0:T of two processes with drifts g(x) and f (x) is given by (see e.g. [4,12])

DT (P g, P f )
.= E P g

[
ln

dP g

dP f

]
= 1

2

T∫
0

dt

∫
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t (x)‖g(x) − f (x))‖2
D−1 .

Here D(x) .= σ(x)σ (x)� is the diffusion matrix for both processes. pg
t (x) is the marginal density of the process P g at time t

and the square norm is defined as ‖u(x)‖2
A

.= u(x) · A(x)u(x) for positive definite matrices A. Assuming that pg
t (x) converges 

to the stationary density pg(x) for t → ∞, we consider the relative entropy rate (RER)

d(P g, P f )
.= lim

T →∞
1

T
DT (P g, P f ) = 1

2

∫
pg(x)‖g(x) − f (x))‖2

D−1dx . (2)

Assume that the drift f (x) and the diffusion D(x) are known, but we don’t know g . We would like to estimate the RER 
using observations generated by the process P g over a large time window T .

For general drift functions g , following (2), one would have to estimate both the drift and the stationary density pg (x)
from the observations. This double estimation problem simplifies when D = σ 2 I and the drift is derived from a potential 
i.e. g(x) = σ 2∇ψ(x). Then the stationary density is given by pg(x) ∝ e2ψ(x) and one might use a smooth estimator of the 
density pg(x), e.g. a kernel density estimator (KDE) in order to estimate the RER. One drawback of this method is the fact 
that the accuracy of the KDE is expected to deteriorate rapidly with increasing dimensionality (see e.g. [14]).

We will next introduce a different approach which avoids the explicit estimate of the density but estimates the difference 
between g and f . It is based on a variational formulation for the RER (2) and requires a generalised potential condition. To 
be specific, we assume that the drift is of the form

g(x) = f (x) + D(x)∇ψ∗(x) . (3)

This includes the equilibrium case mentioned before but also more general models such as Langevin dynamics [15]. We 
will later argue in Section 5 that this potential condition naturally appears in the formulation of specific stochastic control 
problems.

The stationary density pg(x) for drift (3) is a solution of the Fokker–Planck equation

L f pg(x) − ∇ · (D(x)∇ψ∗(x)pg(x)) = 0 (4)

where the Fokker–Planck operator L f for the drift f (x) is given by

L f pg(x) = ∇ ·
[
− f (x)pg(x) + 1

2
∇ · (D(x)pg(x))

]
. (5)

The RER (2) becomes

d(P g, P f ) = 1

2

∫
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∥∥2

D dx . (6)
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