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The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously 
maintains spatial accuracy by adopting additional interior integration points, known as 
cubature points. To date, such points are only known analytically in tensor domains, 
such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral 
element method (SEM) in non-tensor domains always relies on numerically computed 
interpolation points or quadrature points. However, only the cubature points for degrees 1 
to 6 are known, which is the reason that we have developed a p-norm-based optimization 
algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new 
cubature points with all positive integration weights for degrees 7 to 9. The dispersion 
analysis illustrates that the dispersion relation determined from the new optimized 
cubature points is comparable to that of the mass and stiffness matrices obtained by exact 
integration. Simultaneously, the Lebesgue constant for the new optimized cubature points 
indicates its surprisingly good interpolation properties. As a result, such points provide 
both good interpolation properties and integration accuracy. The Courant–Friedrichs–
Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral 
element (TSEM), the TSEM with exact integration, and the optimized cubature-based 
TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the 
OTSEM. A numerical example conducted on a half-space model demonstrates that the 
OTSEM improves the accuracy by approximately one order of magnitude compared to the 
conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even 
higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a 
result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy 
of the OTSEM is also tested with a non-flat topography model. In terms of computational 
efficiency, the OTSEM is more efficient than the Fekete-based TSEM, although it is slightly 
costlier than the QSEM when a comparable numerical accuracy is required.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The spectral element method (SEM) is a spectrally accurate algorithm for solving partial differential equations (PDEs), 
which combines the geometrical flexibility of the finite element method (FEM) with the accuracy associated with the spec-
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tral method [1]. The computational domain can be divided into quadrilateral (hexahedral) [2–4] or triangular (tetrahedral) 
elements [5–8]. All variables in each element are approximated by high-order polynomials. The solution of discrete PDEs is 
obtained by using their integral forms. The diagonal mass matrix can be obtained with appropriate discretization elements 
as well as clever choice of test functions and collocation points (i.e., collocated interpolation and integration points), which 
leads to a computationally efficient method [2].

The quadrilateral spectral element method (QSEM) relies on a nodal basis derived from Gauss–Lobatto–Legendre (GLL) 
points (or the tensor products of GLL points) [2]. The GLL points have both near-optimal polynomial interpolation and 
integration (cubature) properties [9], which allow one to integrate the stiffness matrix of degree 2N − 2 exactly and to 
estimate the mass matrix of degree 2N using a high-precision quadrature rule with algebraic accuracy of 2N − 1 [9,10]. 
Simultaneously, the small Lebesgue constant of the GLL points means that they can generate a well-conditioned nodal 
basis. Although a quadrilateral grid has been successfully used, it cannot faithfully and flexibly represent extremely complex 
geometry. Compared to the quadrilateral and hexahedral elements, the triangular and tetrahedral elements are considerably 
more flexible for practical applications. Despite it is possible to divide each triangle (or tetrahedron) into four quadrilaterals 
(or hexahedra) at the expense of increasing the number of nodes per element, the quality of the resulting meshes tends to 
be poor [11]. Therefore, it seems advisable to develop a method that can be directly applied to the simplex.

Bearing highly complex geometries in mind, the SEM on triangular (tetrahedral in 3D) elements is generally preferred 
[5–8,12–17]. Unfortunately, points analogous to the GLL points in the case of triangle have not been found after 120 years 
of research on orthogonal polynomials [18]. At present, the points with an optimal polynomial interpolation and integra-
tion properties are only known analytically for an interval and their tensor products. Hence, SEM is usually confined to 
quadrilateral and hexahedral elements. For non-tensor product domains, such as triangular or tetrahedral elements, there 
is very little analytical knowledge about the location of the optimal points. This problem is still an open issue. As the GLL 
points in a one-dimensional (1D) case cannot be extended to a two-dimensional (2D) case, the diagonal mass matrix meth-
ods on the triangle always resort to numerically computed interpolation points [13,19–21], or quadrature points [14]. Until 
now, the typical methods used to find these points either optimize the interpolation nodes or the polynomial integration 
rather than both. In this sense, several attempts have been made to determine these points by minimizing the Lebesgue 
constant directly or indirectly. Chen and Babuška [20] directly minimized the Lebesgue constant. Bos [19] and Taylor et al. 
[13] chose node positions that maximize the determinant of the classical Vandermonde matrix, and the resulting nodes are 
known as Fekete points. An alternative and physically motivated approach comes from the observation of Stieltjes [22,23], 
which indicates that the roots of the Jacobi polynomials coincide with the equilibrium configuration of charges constrained 
to lie on the bi-unit interval. Hesthaven [21] extended this analogy to compute nodal distributions by seeking equilibrium 
positions of charges distributed on the triangle with line charges on the boundaries. Some explicit approaches have also 
been proposed using an easy-to-implement scheme. Warburton [24] made an explicit construction for interpolation nodes 
on a simplex whose Lebesgue constants are better than or comparable to those of the existing node sets, at least up to the 
tenth-order interpolation. Blyth et al. [25,26] obtained a Lobatto interpolation grid over the triangle by means of a sequence 
of increasingly refined grids, whose Lebesgue constants compete with those of more complicated nodal distributions. Fol-
lowing Blyth’s [25] idea, Luo and Pozrikidis [27] constructed a Lobatto interpolation grid on a tetrahedron. Pasquetti and 
Rapetti [17] reviewed the choice of interpolation nodes on the triangle.

For the optimal interpolation points on the triangle, such as the Fekete points [12,19], electrostatic points [21] and min-
imum Lebesgue constant points [20], although they are all well-conditioned interpolation nodes, the algebraic accuracy of 
the generalized Newton–Cotes integration based on these nodes reaches only degree N (i.e., the order of the Lagrange poly-
nomials on the triangle) [9,28]. This is a poor approximation of the inner products of the stiffness matrix (degree 2N − 2) 
and the mass matrix (degree 2N) for seismic wave modeling or second-order PDEs [9,10]. Therefore, the poor approximation 
to the stiffness and mass matrices using the integration formula with accuracy of degree N (i.e., the generalized Newton–
Cotes integration) is insufficient to achieve an exponential convergence [29] because the optimal interpolation points are 
only good for polynomial interpolation but not for the integration property.

To date, some attempts have been made to find a quadrature rule that can integrate a larger space. Cohen et al. [30]
made a pioneering work by enriching the polynomial space with additional interior nodes that vanish at the edges and 
vertices of the elements. They constructed the points that are analogous to the GLL points for degrees 2 and 3 on the 
triangle, which increases the integration precision and has positive integration weights. Following the similar idea, Mulder 
[31–33] obtained such points for degrees 4 to 6, and Giraldo and Taylor [9] for degrees 6 to 7. This method is the so-called 
mass-lumped method, and the integration points are called cubature points because they have higher integration accuracy 
in contrast to the optimal interpolation points. Although Giraldo and Taylor [9] gave the cubature points for degrees 6 to 
7, these points are highly unstable for seismic wavefield modeling. For this reason, they adopted a strong low-pass filter 
(i.e., erfc-log filter) to stabilize the solution at every 20 time steps. In addition, Mulder [33] pointed out that the integration 
strength given by Giraldo and Taylor [9] is too small. Furthermore, Helenbrook [34] theoretically proved the following 
property of the integration rule on the triangle: an integration rule with (N + 1)(N + 2)/2 integration nodes is not capable 
of exactly integrating the space spanned by T (2N −1) ≡ {xm yn|0 ≤ m, n; m +n ≤ 2N −1}, where N is the order of interpolant 
polynomials; the integration nodes must include three vertices, N + 1 points on each edge, and (N − 2)(N − 1)/2 points 
in the interior of the triangle. Following the Helenbrook’s work [34], Xu [35] proved that the number of inner-mode nodes 
must be greater than or equal to N(N − 1)/2 if a cubature rule with algebraic accuracy of 2N − 1 exists on the triangle. 
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