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This paper presents Chebyshev-like generalized Shapiro (C S) filters with improved spectral-
like resolution compared to existing generalized Shapiro filters. These new filters combine 
the advantages of Shapiro filters, i.e. arbitrary accuracy order, no-dispersion, full damping 
of 2�-waves, and the advantages of Chebyshev filters, i.e. purely dissipative response 
function with equal ripples satisfying an arbitrary Chebyshev criterion in passband. Thanks 
to the formalism of generalized Shapiro filters, general formulas are derived for arbitrary 
accuracy orders and arbitrary Chebyshev criterion. A python script is provided in appendix 
to compute C S filter coefficients. Computations based on the Euler equations assess the 
benefit of C S filters compared to the standard Shapiro filters. Since C S filters differ 
from Shapiro filters only by their coefficients, they can easily and advantageously be 
implemented in computational solvers already making use of generalized Shapiro filters.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Spatial filters are used in many computational physic problems and are mostly designed for two distinct applications: 
either to smooth an initial data field or to ensure stability and convergence of computations performed with non-dissipative 
finite-volume or finite-difference high-order schemes. In both cases, their role is to cancel spurious waves, or 2�-waves, 
while preserving long-wavelength components of the filtered fields. Since the late 1950’s and early work of Shuman [1], 
there has been a constant research effort to design more accurate and selective filters, mostly in the fields of weather 
forecasting and climate modeling [2], computational fluid dynamics [3] and computational aeroacoustics [4]. Following the 
ideas of Shuman, Shapiro [5–7] designed in the 1970’s a class of optimal explicit filters of 2n order accuracy, defined 
on (2n + 1)-point stencil, that preserves the largest structures and fully damps the 2�-waves. Since the breakthrough of 
Shapiro filters, two paths have been employed to increase the cut-off frequency (or passband) of selective filters. The first 
path, already used by Shuman [1], consists in giving up the maximal accuracy achievable by the filter on a given stencil 
and accepting a “small” amount of error in passband in trade off an increase of the cut-off frequency. This path has been 
followed by von Storch [8] and more recently by Bogey and Bailly [9], Bogey, de Cacqueray and Bailly [10] or Redonnet and 
Cunha [11]. The second path relies on the use of Padé fractions that allow more flexibility on the filter design at the cost of 
linear algebra. Such filters have been designed by Raymond [12–14], Lele [15], Gaitonde, Visbal et al. [16,17], and Kim [18]. 
These filters are originally designed to be used on structured grids but recent studies show that it is possible to extend 
them to unstructured grids [19]. More details on filter design, advantages, or limitations compared to other methodologies 
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for weather forecasting, climate modeling, computational fluid dynamics and computational aeroacoustics can be found in 
Refs. [2–4,14,20,21].

The work presented here follows the first of the two paths mentioned above and relies on a analysis of the design criteria, 
strengths, and weaknesses of existing spectral-like filters. Based on this analysis and taking advantage of the formalism of 
generalized Shapiro filters introduced in Ref. [22], we derive a new class of spectral-like filters that combines the advantages 
of Shapiro filters [5–7], i.e. arbitrary accuracy, no-dispersion, full damping of 2�-waves, and the advantages of Chebyshev 
filters of the first type [20,21], i.e. purely dissipative response function with equal ripples satisfying an arbitrary Chebyshev 
criterion in passband. These filters will be referred to as Chebyshev-like generalized Shapiro filters or C S filters. The paper 
is organized as follows. The Shapiro filters are recalled in section 2. Section 3 summarizes the formalism of generalized 
Shapiro filters. In section 4, an analysis of the design criteria and properties of existing spectral-like filters is performed. 
Section 5 describes the design principles and properties of the Chebyshev-like generalized Shapiro filters. Generic formulas 
are derived for arbitrary accuracy orders and arbitrary Chebyshev criterion. A python script, computing C S filter coefficients, 
is provided in Appendix A. In section 6, the benefit of C S filters compared to standard Shapiro filters is assessed through 
the computations of steady and unsteady fluid dynamics test cases: the numerical evolution of a stationary vortex, the 
advection of a vortex, and a smooth bubble convection.

2. Shapiro filters

Let w = w(x) be a continuous function defined for x ∈ R and, wi = w(xi) be its discretization on a uniform grid (xi =
i�x) with spatial step �x. Applying a (2n + 1)-point nonrecursive symmetric filter F to w provides:

w̃i = F (wi) =
n∑

k=−n

ak wi+k (1)

where w̃i is the filtered value of w at point xi = i�x, and ak are the filter coefficients. Shapiro filters [5–7] are 2n-order 
accurate (2n + 1)-point filters of the form:

S2n(wi) =
(

1 + (−1)n−1(δ/2)2n
)

wi (2)

where n is a positive integer, δ is the standard finite difference operator [23,24], defined by δwi = wi+1/2 − wi−1/2, and 
δ2n denotes 2n successive applications of δ. The discrete coefficients of the operator δ2n/22n are given by the (2n + 1)-row 
entries of Pascal’s triangle corresponding to the development of (a − b)n divided by 22n . The response function of the filter, 
Ŝ2n(ξ), and its Taylor expansion writes respectively:

Ŝ2n(ξ) = 1 − sin2n (ξ/2) (3)

with ξ = k�x the reduced wavenumber, and

S2n(wi) = wi + (−1)n−1 �x2n

22n

∂2n w

∂x2n

∣∣∣∣
i
+O

(
�x2n+2

)
(4)

Summarizing the analysis given by Shapiro in Ref. [6], these one-dimensional filters are equivalent to the identity operator 
plus a linear diffusion of order 2n with a coefficient Kn = (−1)n−1�x2n/22n . Often referred to as standard explicit filters, 
Shapiro filters are the corner stone of a wide class of explicit and implicit generalized Shapiro filters [22] used as substitute 
for numerical dissipation in weather forecasting or climate modeling [2], high-order computational fluid dynamics [3] and 
computational aeroacoustics [4].

3. Generalized Shapiro filters

Initially restricted to filters discussed by Purser [25], the notion of generalized Shapiro filters has been recently extended 
to other explicit and implicit filters in Ref. [22] using a formalism that makes easier their analysis and design. Restricting 
the forthcoming reminder to explicit filters, a linear filter F defined on a (2n +1)-point stencil is a generalized Shapiro filter 
if it can be expressed as:

F (wi) =
(

1 +
n∑

k=1

A2k D2k

)
wi with D2k = (−1)k−1 δ2k

22k
and

n∑
k=1

A2k = 1 (5)

where D2k is the dissipative operator of the 2k-th order Shapiro filter and where A2k are real coefficients. An explicit filter 
is thus a generalized Shapiro filter if it is a linear combination of Shapiro filters with the sum of the A2k coefficients being 
equal to one (which ensures the cancellation of the 2�-waves). Thus for explicit filters, an equivalent notation is:
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