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An efficient multiscale (MS) gradient computation method for subsurface flow management
and optimization is introduced. The general, algebraic framework allows for the calculation
of gradients using both the Direct and Adjoint derivative methods. The framework also
allows for the utilization of any MS formulation that can be algebraically expressed
in terms of a restriction and a prolongation operator. This is achieved via an implicit
differentiation formulation. The approach favors algorithms for multiplying the sensitivity
matrix and its transpose with arbitrary vectors. This provides a flexible way of computing
gradients in a form suitable for any given gradient-based optimization algorithm. No
assumption w.r.t. the nature of the problem or specific optimization parameters is
made. Therefore, the framework can be applied to any gradient-based study. In the
implementation, extra partial derivative information required by the gradient computation
is computed via automatic differentiation. A detailed utilization of the framework using
the MS Finite Volume (MSFV) simulation technique is presented. Numerical experiments
are performed to demonstrate the accuracy of the method compared to a fine-scale
simulator. In addition, an asymptotic analysis is presented to provide an estimate of its
computational complexity. The investigations show that the presented method casts an
accurate and efficient MS gradient computation strategy that can be successfully utilized
in next-generation reservoir management studies.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Model-based reservoir management techniques typically rely on the information provided by derivatives. For instance,
in sensitivity analysis studies, derivatives can be directly used to identify the most influential parameters in the reservoir
response. Also, derivative information can be utilized in history matching [1] and control optimization [2] studies, where
gradient-based optimization techniques are employed in the minimization/maximization of an objective function.

These types of model-based reservoir management studies are computationally demanding. They require multiple eval-
uations of the reservoir model in order to compute its response under the influence of different inputs. Reduced-order
modeling (ROM) techniques have been employed to reduce the computational cost of the reservoir response evaluation. In
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sensitivity analysis studies, response surface models and design of experiments are often used to reduce the computational
costs (see, e.g., [3]). In history matching and optimization studies, techniques like upscaling [4], streamline simulation [5],
and proper orthogonal decomposition [6] are employed to create reservoir models that are faster to evaluate. However,
ROM and upscaling methods usually do not provide accurate enough system responses due to excessive simplifications of
the fluid-rock physics and heterogeneous geological properties. To resolve this challenge, Multiscale (MS) methods have been
developed [7-9].

MS methods solve a coarser simulation model, thus increasing the computational speed, while resolving the fine scale
heterogeneities. Note that the specific multiscale methods addressed here, map between fine and coarse grids that are
both at continuum (Darcy) scale, but with different computational grid resolutions. Moreover, the map between the nested
fine and coarse grids is developed by using multiscale basis functions [7]. The basis functions are local solutions of the
fine-scale equation, which are adaptively updated [10,11] and allow the MS coarse system to account for the fine-scale
heterogeneities (which typically do not have separation of scale). Note that in contrast with MultiGrid (MG) methods, MS
methods are not developed as linear solvers, but are most efficient if they are used - similar as in this paper - to provide
approximate conservative fine-scale solutions (crucial for multiphase systems). MS methods are found efficient and accurate
for large-scale reservoir models [12,13]. Important in this class of MS methods (compared to upscaling methods) is that
the coarse-scale solutions are mapped onto the original fine scale, using the same basis functions. As such, errors can be
calculated against the fine-scale reference systems (and not upscaled averaged ones). This allows for the development of
convergent iterative MS procedures [14-16]. Recent developments include MS formulations for fractured media [17,18] with
compositional effects [19,12,13] and complex well configurations [20] and gravitational effects [21]. In addition, algebraic
formulation of the method has made it convenient to be integrated within existing simulators using structured [22,23]
and unstructured [24-26] grids. The method has been also extended to fully-implicit formulations where all unknowns
cross multiple dynamically-defined scales [27]. Although these developments are found efficient, they are mainly limited to
forward simulation modeling. In this paper the focus is on the use of MS methods within reservoir management workflows.

Reservoir management techniques include optimization algorithms, in which calculation of derivatives plays an impor-
tant role. The classical approaches for calculation of derivatives are either computationally expensive or inaccurate. For
instance, numerical differentiation (see, e.g., [28,29]) suffers from discretization approximations and truncation errors, and
is impractical when the number of parameters is large. Alternatively, analytical methods - Direct Methods (or Gradient
Simulators) [30] and Adjoint Methods [31,32] - can provide accurate and efficient derivatives under appropriate conditions
(to be further discussed in the Section 2). However, the use of analytical methods has not been extensively adopted mainly
because they are code-intrusive and require a substantial implementation effort. On this issue, automatic differentiation can
partly alleviate the burden of computing derivative information [33]. Additionally, most commercial simulators do not pro-
vide analytical derivative capabilities nor do they provide access to extend their functionality in this direction. Partially due
to these drawbacks, ensemble methods such as the Ensemble Kalman Filter (EnKF) have become very popular in the data
assimilation community [34]. Similarly, stochastic approximate gradient techniques such as ensemble optimization (EnOpt)
and the stochastic simplex approximate gradient (StoSAG) method are increasingly being used for life cycle optimization
[35,36]. These methods, however, by construction, provide an approximation of the gradient.

Multiscale gradient computation has been studied in the past. A Multiscale finite-volume Adjoint (MSADJ]) method has
been applied to sensitivity computation [37], where the global adjoint problem is solved via a set of coupled sub-grid
problems described at a coarser scale. The coarse-scale sensitivities are then interpolated to the local fine grid by recon-
structing the local variability of the model parameters with the aid of solving embedded adjoint sub-problems. In a follow
up paper [38], the MSAD] method was efficiently applied to inverse problems of single-phase flow in heterogeneous porous
media. Also, an efficient Multiscale Mixed Finite Element method has been developed for multiphase adjoint formulations,
where both pressure and saturations are solved at the coarse scale [39]. In contrast to MSAD], this method did not require
fine-scale quantities.

The present development introduces a mathematical framework to compute sensitivities (gradients) in a multiscale
strategy. The framework enables the same computational efficiency as existing multiscale methods [37-39]. However, its
formulation allows for full flexibility with respect to the types of gradient information that are required by the different
model-based reservoir management studies. This is achieved via an implicit differentiation strategy, as opposed to the more
traditional Lagrange multiplier formulation. Also, the formulation naturally provides not only the Adjoint Method, but also
the Direct Method. It is important to note that, although in this work the multiscale finite volume (MSFV) is being studied,
the proposed MS-gradient method is not restricted to a specific MS method. Instead, it can be utilized in combination with
any MS (and multi-level) strategy which is expressed in terms of restriction and prolongation operators.

This paper is structured as follows. First, the multiscale gradient computation method is derived based on the MS reser-
voir model equations and the respective model responses. The computation of the required prolongation (matrix of basis
functions) operator derivatives is developed within the Multiscale Finite Volume (MSFV) formulation. Computational com-
plexity of the method is also discussed from a theoretical point of view via asymptotic analysis of the algorithms. Thereafter,
the Numerical Experiments section describes a systematic investigation of the validation, robustness, and accuracy of the
MS-gradient method for test cases of increasing complexity. Because the proposed method is quite fundamental, the exper-
iments are aimed at evaluating the gradient computation itself, rather than any specific application.
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