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Article history: We present a technique that permits to increase the efficiency of multidimensional
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Available online 31 August 2016 random variables while its variability contributes only little to the total variance. This

is in particular relevant for transport problems in complex and randomly distributed
geometries. The proposed technique is based on an new Monte Carlo estimator in

I]\(:gmzngrlo integration which the conditioned random variables are sampled more often than the unconditioned
Monte Carlo efficiency one. A significant contribution of the present Short Note is an automatic procedure for
Monte Carlo in complex geometry calculating the optimal number of samples of the conditioned random variable per sample
Statistical physics of the unconditioned one. The technique is illustrated by a current research example where

it permits to increase the efficiency by a factor 100.
© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Monte Carlo integration is used in many research fields (e.g. radiation transport physics, quantum mechanics, financial
computing [1,2]) to evaluate multidimensional integrals that can be written as the expectation A of a random variable W:
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AZE[lefdxpx(X) / dy py(y; x) W(x, y) (1)
Dx Dy (x)

where X and Y are (vector) random variables (defined by their domains Dy and Dy (x) as well as their associated prob-
ability densities px and py(y;x)), and W is the random variable defined by the function w that to X and Y associates
W = w(X,Y). Monte Carlo integration permits to evaluate an unbiased estimator of .4 by sampling n independent and
identically distributed (IID) random variables X; and Y; (where all the X; are IID as X, and all the Y;(x) are IID as Y(x)).
The plain Monte Carlo estimator A, is defined by

1.
A=E[An] with Ay = = > " W(X;, Yi). (2)
n i=1

The practical use of Monte Carlo integration is sometimes limited by the prohibitive computational cost required to obtain
an estimate with the required precision (the standard deviation o, of the Monte Carlo estimate being inverse proportional
to +/n). This has motivated research to increase the efficiency, which is a quality measure for a Monte Carlo estimator taking
into account both its precision and its computational cost [3]:

1
GAn = —
2
04.Cay

(3)

where afﬂ is the variance of Ay, and C,4, the computational cost required to calculate A,. Depending on the specific

problem, several variance reduction techniques might permit to increase the efficiency (e.g., importance sampling, stratified
sampling, control variates and antithetic sampling [2]). The present Short Note presents a technique that increases the Monte
Carlo efficiency for problems where the sampling of the unconditioned random variable X is computationally expensive
(compared to the sampling of the conditioned random variable Y) whereas the variability of X contributes only little to
the variance of W (compared to the variability of Y). This will be quantified in Sec. 2. Such a situation is encountered,
e.g., in transport problems in complex geometries where the geometry is statistically distributed (see Sec. 3 for a practical
example). The principle is to consider a new Monte Carlo estimator in which Y is sampled more often than X. To our
knowledge, despite the simplicity of this technique, it has never been explicitly reported in the Monte Carlo literature.
Its formal investigation in the present Short Note permits us in particular to provide an easy-to-implement procedure to
automatically compute the optimal number of samples of Y per sample of X (at the end of Sec. 2).

2. Efficiency-optimized Monte Carlo algorithm

We propose to use the new estimator A, n, of A defined by
1 n 1 ny
A= E[Apn ] With Anpy =~ > - > WX, V). (4)
i=1 j=1

where all the Y;;(x) are IID as Y;(x). Ay, is indeed an estimator of A since E[W(X;, Yij)] = E[W(X;, Y;)] for all j. Note that
the plain Monte Carlo estimator A, corresponds to ny =1 in Eq. (4). The Monte Carlo algorithm corresponding to Eq. (4) is:

1. repeat n times (for i from 1 to n):
(a) realize a sample x; of Xj;
(b) repeat ny times (for j from 1 to ny):
i. realize a sample y;; of Yj;;
ii. calculate Wij = W(x;, yij);
(c) calculate the Monte Carlo weight f; = % ?
2. calculate the Monte Carlo estimate ay n, = % Z?:l f,- and the standard error Ohnny = \/JT]\/% Z?:l }iz _ (% Z?:] j;i)2.
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Let us now determine the efficiency increase permitted by this technique. Therefore we first have to express the contribu-
tions of X and Y to the total variance Gﬁnn and the total computational cost Ca, ny of the proposed Monte Carlo estimator
Ny ’

An.ny. Denoting o)% = Varx[Ey[W|X]] the explained variance (which is the contribution of X) and 63 = Ex[Vary[W|X]]
the unexplained variance (which is the contribution of Y) of the random variable W, and then applying successively the
law of total variance and the Lindeberg-Levy central limit theorem, leads to

1 1.
afmy = (o)% + Eaf) ) (5)
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