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We present a technique that permits to increase the efficiency of multidimensional 
Monte Carlo algorithms when the sampling of the first, unconditioned random variable 
consumes much more computational time than the sampling of the remaining, conditioned 
random variables while its variability contributes only little to the total variance. This 
is in particular relevant for transport problems in complex and randomly distributed 
geometries. The proposed technique is based on an new Monte Carlo estimator in 
which the conditioned random variables are sampled more often than the unconditioned 
one. A significant contribution of the present Short Note is an automatic procedure for 
calculating the optimal number of samples of the conditioned random variable per sample 
of the unconditioned one. The technique is illustrated by a current research example where 
it permits to increase the efficiency by a factor 100.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Monte Carlo integration is used in many research fields (e.g. radiation transport physics, quantum mechanics, financial 
computing [1,2]) to evaluate multidimensional integrals that can be written as the expectation A of a random variable W :
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A = E[W ] =
∫
DX

dx p X (x)

∫
DY (x)

dy pY (y; x) ŵ(x, y) (1)

where X and Y are (vector) random variables (defined by their domains DX and DY (x) as well as their associated prob-
ability densities p X and pY (y; x)), and W is the random variable defined by the function ŵ that to X and Y associates 
W = ŵ(X, Y ). Monte Carlo integration permits to evaluate an unbiased estimator of A by sampling n independent and 
identically distributed (IID) random variables Xi and Yi (where all the Xi are IID as X , and all the Yi(x) are IID as Y (x)). 
The plain Monte Carlo estimator An is defined by

A = E[An] with An = 1

n

n∑
i=1

ŵ(Xi, Yi). (2)

The practical use of Monte Carlo integration is sometimes limited by the prohibitive computational cost required to obtain 
an estimate with the required precision (the standard deviation σAn of the Monte Carlo estimate being inverse proportional 
to 

√
n). This has motivated research to increase the efficiency, which is a quality measure for a Monte Carlo estimator taking 

into account both its precision and its computational cost [3]:

εAn = 1

σ 2
An

C An

(3)

where σ 2
An

is the variance of An , and C An the computational cost required to calculate An . Depending on the specific 
problem, several variance reduction techniques might permit to increase the efficiency (e.g., importance sampling, stratified 
sampling, control variates and antithetic sampling [2]). The present Short Note presents a technique that increases the Monte 
Carlo efficiency for problems where the sampling of the unconditioned random variable X is computationally expensive 
(compared to the sampling of the conditioned random variable Y ) whereas the variability of X contributes only little to 
the variance of W (compared to the variability of Y ). This will be quantified in Sec. 2. Such a situation is encountered, 
e.g., in transport problems in complex geometries where the geometry is statistically distributed (see Sec. 3 for a practical 
example). The principle is to consider a new Monte Carlo estimator in which Y is sampled more often than X . To our 
knowledge, despite the simplicity of this technique, it has never been explicitly reported in the Monte Carlo literature. 
Its formal investigation in the present Short Note permits us in particular to provide an easy-to-implement procedure to 
automatically compute the optimal number of samples of Y per sample of X (at the end of Sec. 2).

2. Efficiency-optimized Monte Carlo algorithm

We propose to use the new estimator An,nY of A defined by

A = E[An,nY ] with An,nY = 1

n

n∑
i=1

1

nY

nY∑
j=1

ŵ(Xi, Yij). (4)

where all the Yij(x) are IID as Yi(x). An,nY is indeed an estimator of A since E[ŵ(Xi, Yij)] = E[ŵ(Xi, Yi)] for all j. Note that 
the plain Monte Carlo estimator An corresponds to nY = 1 in Eq. (4). The Monte Carlo algorithm corresponding to Eq. (4) is:

1. repeat n times (for i from 1 to n):
(a) realize a sample xi of Xi ;
(b) repeat nY times (for j from 1 to nY ):

i. realize a sample yij of Yij ;
ii. calculate ŵi j = ŵ(xi, yij);

(c) calculate the Monte Carlo weight f̂ i = 1
nY

∑nY
j=1 ŵi j ;

2. calculate the Monte Carlo estimate an,nY = 1
n

∑n
i=1 f̂ i and the standard error σAn,nY

= 1√
n−1

√
1
n

∑n
i=1 f̂ 2

i −
(

1
n

∑n
i=1 f̂ i

)2
.

Let us now determine the efficiency increase permitted by this technique. Therefore we first have to express the contribu-
tions of X and Y to the total variance σ 2

An,nY
and the total computational cost C An,nY

of the proposed Monte Carlo estimator 
An,nY . Denoting σ 2

X = V arX [EY [W |X]] the explained variance (which is the contribution of X) and σ̃ 2
Y = E X [V arY [W |X]]

the unexplained variance (which is the contribution of Y ) of the random variable W , and then applying successively the 
law of total variance and the Lindeberg–Levy central limit theorem, leads to

σ 2
An,nY

= 1

n

(
σ 2

X + 1

nY
σ̃ 2

Y

)
. (5)



Download English Version:

https://daneshyari.com/en/article/4967845

Download Persian Version:

https://daneshyari.com/article/4967845

Daneshyari.com

https://daneshyari.com/en/article/4967845
https://daneshyari.com/article/4967845
https://daneshyari.com

