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In the present work we propose a new algorithm for open boundary treatment in ISPH. In 
the literature a few models for open boundary conditions are available, but most of them 
are applied to weakly compressible SPH (WCSPH) only. In our method the inflow/outflow is 
driven by true Dirichlet boundary conditions of the projected pressure field. We ensure the 
Dirichlet boundary condition by a particle mirroring technique at the open boundary to 
compute the pressure field. This procedure enables us to handle variable inlet velocities 
across the open boundary. The Dirichlet boundary conditions are introduced for the 
projected pressure matrix. We apply an error analysis for a Hagen–Poiseuille flow driven 
by a pressure gradient and demonstrate the robustness and accuracy with a flow around 
a cylinder and an oscillating flow, where inlet and outlet conditions periodically change. 
Additionally, a volume flux controller is presented in combination with variable pressure 
boundary conditions. Finally, the new open boundary treatment is applied to a bubble 
formation process during gas injection and validated with experimental results.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Our goal is the use of the ISPH-method for simulations of multi-phase flow of immiscible fluids through solid structures 
like it happens in a gas injection nozzle in a bubble column reactor [1] or during the transport of fluids through porous 
media [2]. For these and similar examples robust treatment of open boundaries is crucial.

Hosseini and Feng [3] introduced a rotational pressure-correction scheme to deal with pressure boundary conditions 
(b.c.) in ISPH, but they still used a Neumann boundary condition when solving the pressure Poisson equation. Souto-Iglesias 
et al. [4] discussed Dirichlet and Neumann b.c. for pressure for the Lagrangian Moving Particle Semi-implicit Method (MPS) 
where the classical projection method of Chorin [5] was used. Recently Leroy et al. [6] introduced Dirichlet b.c. in ISPH, 
using unified semi-analytical wall boundaries [7].

Hirschler et al. [8] presented an approach for the ISPH-method using the classical SPH projection method of Cummins 
and Rudman [9]. In order to change the homogeneous Neumann boundary conditions for pressure at the open boundary to 
Dirichlet boundary conditions, they used mirrored particles at the inflow/outflow regions with a linear projection method. 
They split the open boundary into piece-wise defined mirror axes to minimize errors in the 0th moment of the kernel 
function. Regarding the Lagrangian movement of the particles all mirror axes are changing their position in each time-step. 
Hereafter we call this method the moving-mirror-axes method (MMA).
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In contrast to WCSPH pressure and density are treated separately in ISPH. Therefore, a limited error in the 0th moment 
of the kernel function can be accepted at the inflow/outflow region when using the corrected SPH formulation of Bonet and 
Lok [10]. This is not possible in standard WCSPH if a reasonable smoothing length of the kernel is applied [11].

In this work we used the same approach with mirrored particles from Hirschler et al. [8] to define a Dirichlet b.c. 
for pressure at the open boundary, but now we kept the position of the mirror axis constant. Additionally, we applied a 
divergence free condition for the velocity field at the open boundary, when solving the pressure Poisson equation. Together 
we call this the fixed-mirror-axes-method (FMA) later on. The combination of “corrected gradients of the corrected kernel” 
by Bonet and Lok [10] together with fixed mirror axes leads to an improved accuracy and robustness of the simulation at 
the open b.c.. The main advantage of the FMA method lays in the unique geometric specifications when and where new 
particles are added to or deleted from the system domain. Hence we can handle inflow and outflow over the same boundary 
segment straightforward since the flow profile just follows from the pressure boundary condition.

In contrast to boundary conditions with a fixed volume flux the Dirichlet b.c. for pressure can handle lateral variable 
flow profiles. This property is used in this work to introduce a volume flux controller, where the b.c. for pressure at the 
inlet is the controlled variable, to ensure a desired volume flux rate.

2. Model

Isothermal flow of incompressible Newtonian fluids in a continuous domain is described by the Navier–Stokes equations:

ρ
Du

Dt
= −∇p + μ∇2u + ρ g + FV O L

wn + FV O L
wns , (1)

where the term −∇p + μ∇2u results from a pressure gradient and viscous stress in the system and g represents any 
body force like gravity. FV O L

wn and FV O L
wns are volumetric forces which represent the forces acting at the fluid–fluid interface 

resulting from surface tension and the forces at the contact line between the two fluids and the wall, respectively. We call 
this model the CSF/CLF model where the Continuum Surface Force (CSF) was introduced by Brackbill et al [12] and brought 
to SPH by Morris [15], with

FV O L
wn = fwn δwn = σwn κwn nwn, (2)

where fwn , δwn , σwn , κwn and nwn are the force per unit area, surface delta function, surface tension coefficient, curvature 
of the interface and the normal vector to the interface, respectively. An extension to the CSF model which includes forces at 
the contact line was proposed by Huber et al. [16]

FV O L
wns · νns = (σns − σws + σwn (ν̂ns · ν̂wn︸ ︷︷ ︸

− cos θ

)) δwns (3)

For incompressible fluids the continuity equation simplifies to

Dρ

Dt
= −ρ (∇ · u) = 0. (4)

2.1. Implementation in SPH

We use the ISPH method introduced by Cummins and Rudman [9]. As kernel function we take the C2 spline function 
from Wendland [17]

W (r,h) = 7

4πh2

{
(1 − q

2 )4 (2q + 1) if q < 2,

0 else,
(5)

where q = |r|/h and the smoothing length is chosen with h = 2.1 in most cases because the CSF-model shows best results 
for this choice. For a single-phase Poiseuille flow it is additionally reduced to h = 1.6 to demonstrate the applicability of 
a reduced smoothing length in combination with the new open boundary treatment. The acceleration due to the viscous 
force is formulated according to Hu and Adams [18](

ν ∇2u
)

i
= 1

mi

∑
j

μ̄i j

(
V 2

i + V 2
j

) ui j

ri j

∂W̃ ij

∂ri j
, (6)

with W̃ ij = W̃ (ri j, h) = W̃ (ri − r j, h), ri j = |ri − r j |, ui j = ui − u j and

μ̄i j = 2μiμ j

μi + μ j
. (7)
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