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A new numerical method for the solution of an internally mixed spatially homogeneous 
sectional model for aerosol nucleation and condensation is proposed. The characteristics 
method is used to predict droplet sizes within a discrete time step. The method is de-
signed such that 1) a pre-specified number of moments of the droplet size distribution 
may be preserved, 2) there exists no time step stability restriction related to the condensa-
tion rate and section size, 3) highly skewed fixed sectional distributions may be used and 
4) it is straightforward to extend to spatially inhomogeneous settings and to incorporate 
droplet coagulation and break-up. We derive, starting from mass conservation, a consis-
tent internally mixed multi-species aerosol model. For certain condensational growth laws 
analytical solutions exist, against which the method is validated. Using two-moment and 
four-moment-preserving schemes, we find first order convergence of the numerical solu-
tion to the analytical result, as a function of the number of sections. As the four-moment-
preserving scheme does not guarantee positivity of the solution, a hybrid scheme is pro-
posed, which, when needed, locally reverts back to two-moment preservation, to prevent 
negativity. As an illustration, the method is applied to a complete multi-species homoge-
neous nucleation and condensation problem.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

An aerosol is defined as a mixture of a particulate phase suspended in a carrier gas. Aerosols are around us everywhere, 
as clouds, smoke, sprays or dust, and we are exposed to them daily. When the particulate phase consists of liquid droplets, 
the aerosol is often formed by means of nucleation and condensation, with subsequent coagulation and break-up. These 
processes must be captured accurately to predict the properties of such an aerosol. We propose a new numerical method for 
a sectional aerosol method, which is capable of solving the General Dynamic Equation (GDE) for the droplet size distribution 
of an aerosol undergoing nucleation and condensational growth. In contrast to other methods, the new approach does not 
have a condensational time step restriction, making it an efficient and robust algorithm for predicting aerosol formation and 
evolution.
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The properties of an aerosol can be characterized in terms of composition of the vapor phase and the size distribution 
of the particulate phase, quantifying the frequency at which a particle with a specific composition and size occurs in the 
system. In Computational Fluid Dynamics (CFD), there are two main ways of modeling the aerosol and computing these 
properties as a function of time and space: one can adopt either a Lagrangian or an Eulerian description of the particulate 
phase. In a Lagrangian description each particle is tracked individually, and explicit averaging over the particles is used to 
extract property distributions. In an Eulerian description, one computes a selected number of spatially averaged properties 
of the size distribution. In general, the Lagrangian approach may be considered as the more fundamental approach, as 
neither spatial averaging is performed, nor are any assumptions made on the size or composition of individual particles. 
The change in size, composition and position of a particle follows from simple dynamic models, describing properties such 
as the position, velocity, temperature, size, composition, etc. In the Eulerian formulation, a distribution, or a number of 
corresponding moments of this distribution, are computed. The level of detail with which the distribution is described is 
reduced with respect to the Lagrangian approach, which makes the Eulerian description computationally preferential in 
complex aerosol systems with many particles.

In this paper, we adopt an Eulerian aerosol description, and set out to develop a robust and stable numerical method 
for finding a solution to the governing aerosol equations. In the formulation of the aerosol model we select the ‘internally 
mixed’ concept, defined in this paper to describe a system in which locally all particles have the same chemical composition, 
independent of size [1]. This reduces the complexity of the model significantly, compared to a size-dependent composition 
model. Note that composition may still vary spatially. In the Eulerian formulation there are three main branches of methods 
which can be used to determine the size distribution. The first, and generally most precise, is the continuous method, in 
which the size distribution is discretized using conventional methods like the finite element method or the finite difference 
method (e.g., see [2–6]). These methods are usually expensive, and almost exclusively applied to spatially homogeneous 
settings. Also, schemes may become unstable if the condensation rate is high [7]. This problem may be addressed by 
adding artificial diffusion, or by increasing the number of distribution discretization points, making the method inaccurate or 
very expensive, respectively. Complementary to continuous methods are moment methods, in which no longer the complete 
distribution is solved, but only a specific number of moments of the distribution. This greatly reduces the degrees of freedom 
of the system, making moment methods desirable in terms of computational efficiency. The main problem of moment 
methods is that they require closure, as the moments of interest may depend on higher order moments. To achieve closure, 
one can make an assumption on the shape of the distribution (e.g., see [8–11]). However, such an assumption may be 
too restrictive. A popular alternative to mitigate this problem is the Quadrature Method Of Moments (QMOM) (e.g., see 
[12–19]), in which higher order moments are related to lower order ones using quadrature integration. The QMOM method 
may become numerically challenging and suffers from a non-uniqueness problem [20]. Moreover, it may not be sufficiently 
general in terms of the shape of the distribution.

In between these two methods there is a third one: the discrete population balance method, often referred to as sectional 
method (e.g., see [21–23,20,24–26]). In this class of methods, the size domain is split up in a number of sections or bins, 
in which the size distribution function is assumed to be constant. This allows to solve for a total number concentration in 
each section, rather than the continuous distribution itself. The effects of for example coagulation on the size distribution 
can now be treated in a discrete way, where a finite number of collision events between two sections is considered, as 
in [27]. This sets aside the sectional method from the continuous method. A similar ‘discrete’ approach can be taken for 
condensational growth or droplet break-up, e.g., see [28]. On one hand, although less accurate, the sectional method offers a 
significant reduction in computational effort, in comparison with continuous methods [7]. On the other hand, in comparison 
with moment methods, the method is not subject to any sort of constraint in terms of an assumed particle distribution 
shape. Another key method is the Sectional Quadrature Method of Moments (SQMOM) [29], in which one also divides 
the size domain into sections, each having one ‘primary particle’ responsible for the size distribution reconstruction and 
‘secondary particles’ used for low-order moment preservation in case of particle interactions. It is shown in [29] that all 
before-mentioned sectional and quadrature methods are special cases of SQMOM, illustrating the generality of the method 
and uniting the moment approach with the sectional approach.

We adopt the sectional formulation as presented in [27,28,30], which assigns the particles within a section to a unique 
‘representative size’. This method allows to exactly preserve a pre-specified number of moments of the distribution, and 
offers great flexibility on arbitrary grids. In [30] a moving section method was proposed, to solve for condensational growth. 
Given the hyperbolic character of condensational growth, it is straightforward to incorporate the method of characteristics to 
convect sections in the size domain along trajectories. This method eliminates numerical diffusion and preserves moments 
exactly. However, in a spatially inhomogeneous setting, such a method introduces complications when computing spatial 
gradients [20]. One must either interpolate back to a fixed grid, or one must abandon the idea of using the characteristics, 
and compute the condensational growth on a fixed grid directly. The former was done by, for example, Mitrakos et al. [20], 
using a third order polynomial for the interpolation, which is argued to lead to significant reduction of numerical diffusion 
compared to lower order interpolations. However, only the zeroth moment of the distribution is preserved. Fixed grid 
methods (e.g., see [31–33]) show an analogy with the Finite Volume (FV) treatment of a convective term: fluxes of droplets 
growing from one section to its neighbor are determined by interpolation to section interfaces of the approximate size 
distribution. As shown in [30], these methods suffer from instabilities. Moreover, they reduce the global numerical time 
step size significantly, when condensation is rapid.
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