
Journal of Computational Physics 326 (2016) 516–543

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

An adjoint method for a high-order discretization of 

deforming domain conservation laws for optimization of flow 

problems

M.J. Zahr a,∗, P.-O. Persson b

a Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94035, United States
b Department of Mathematics, University of California, Berkeley, Berkeley, CA 94720-3840, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 December 2015
Received in revised form 5 September 2016
Accepted 7 September 2016
Available online 12 September 2016

Keywords:
Fully discrete adjoint method
Discontinuous Galerkin methods
Deforming domain conservation law
Optimal control
High-order methods
PDE-constrained optimization

The fully discrete adjoint equations and the corresponding adjoint method are derived 
for a globally high-order accurate discretization of conservation laws on parametrized, 
deforming domains. The conservation law on the deforming domain is transformed into 
one on a fixed reference domain by the introduction of a time-dependent mapping 
that encapsulates the domain deformation and parametrization, resulting in an Arbitrary 
Lagrangian–Eulerian form of the governing equations. A high-order discontinuous Galerkin 
method is used to discretize the transformed equation in space and a high-order diagonally 
implicit Runge–Kutta scheme is used for the temporal discretization. Quantities of interest 
that take the form of space–time integrals are discretized in a solver-consistent manner. 
The corresponding fully discrete adjoint method is used to compute exact gradients of 
quantities of interest along the manifold of solutions of the fully discrete conservation law. 
These quantities of interest and their gradients are used in the context of gradient-based 
PDE-constrained optimization.
The adjoint method is used to solve two optimal shape and control problems governed by 
the isentropic, compressible Navier–Stokes equations. The first optimization problem seeks 
the energetically optimal trajectory of a 2D airfoil given a required initial and final spatial 
position. The optimization solver, driven by gradients computed via the adjoint method, 
reduced the total energy required to complete the specified mission nearly an order of 
magnitude. The second optimization problem seeks the energetically optimal flapping 
motion and time-morphed geometry of a 2D airfoil given an equality constraint on the 
x-directed impulse generated on the airfoil. The optimization solver satisfied the impulse 
constraint to greater than 8 digits of accuracy and reduced the required energy between a 
factor of 2 and 10, depending on the value of the impulse constraint, as compared to the 
nominal configuration.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Optimization problems constrained by Partial Differential Equations (PDEs) commonly arise in engineering practice, 
particularly in the context of design or control of physics-based systems. A majority of the research in PDE-constrained 
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optimization has been focused on steady or static PDEs, with a large body of literature detailing many aspects of the subject, 
including continuous and discrete adjoint methods [1–5], parallel implementations [6,7], one-shot or infeasible path meth-
ods [6,8], and generalized reduced gradient or feasible path methods [1,9]. This emphasis on steady problems is largely due 
to the fact that (a) static analysis is sufficient for a large class of problems of interest and (b) unsteady analysis is expensive 
to perform in a many-query setting, such as optimization [10]. However, there is a large class of problems where steady 
analysis is insufficient, such as problems that are inherently dynamic and problems where a steady-state solution does not 
exist or cannot be found reliably with numerical methods. Flapping flight is an example of the first type, a fundamentally 
unsteady problem that has become increasingly relevant due to its application to Micro-Aerial Vehicles (MAVs) [11]. Sys-
tems with chaotic solutions, such as those encountered in turbulent flows, are an example of the second type of problems 
where steady analysis breaks down. Design and control of these types of systems calls for time-dependent PDE-constrained 
optimization of the form

minimize
U , μ

T∫
0

∫
�

j(U ,μ, t)dS dt

subject to

T∫
0

∫
�

c(U ,μ, t)dS dt ≤ 0

∂U

∂t
+ ∇ · F (U ,∇U ) = 0

(1)

where the last constraint corresponds to a system of conservation laws with solution U , parametrized by μ; the objective 
and constraint functions of the optimization take the form of space–time integrals of pointwise, instantaneous quantities of 
interest j and c over the surface of the body �.

In this work, the large computational cost associated with time-dependent PDE-constrained optimization will be ad-
dressed by two means. The first is the development of a globally high-order numerical discretization of conservation laws 
on deforming domains.1 For many important problems, high-order methods have been shown to require fewer spatial de-
grees of freedom [12] and time steps [13,14] for a given level of accuracy compared to low-order methods. Highly accurate 
quantities of interest, usually the time-average of a relevant surface- or volume-integrated quantity, is paramount, at least 
at convergence, since they drive the optimization trajectory through the objective function and constraints. Large errors in 
quantities of interest will cause the optimization procedure to be driven by discretization errors causing termination at a 
suboptimal design/control. The second approach to reduce the computational impact of time-dependent optimization is the 
use of gradient-based optimization techniques due to their rapid convergence properties, particularly when compared to 
derivative-free alternatives.

An efficient technique for computing derivatives of optimization functionals, required by gradient-based optimization 
solvers, is the adjoint method. It has proven its utility in the context of output-based mesh adaptivity and gradient-based 
PDE-constrained optimization as only a single linearized dual solve is required to compute the gradient of a single quantity 
of interest with respect to any number of parameters. In the context of partial differential equations, the adjoint equations 
can be derived at either the continuous, semi-discrete, or fully discrete level. The fully discrete adjoint method will be the 
focus of this work as it ensures discrete consistency [5,10] of computed gradients, i.e. the gradient of the discrete solution, 
including discretization errors, is computed. Discrete consistency is beneficial in the context of gradient-based optimization 
as inconsistent gradients may cause convergence of black-box optimizers to be slowed or hindered [15], unless specialized 
optimization algorithms are employed that handle gradient inexactness [16].

In this work, a globally high-order numerical discretization of general systems of conservation laws, defined on deforming 
domains, is introduced and the corresponding fully discrete adjoint equations derived. The goal is to harness the advantages 
of high-order methods in the context of gradient-based optimization. The solution of the adjoint equations – the dual solu-
tion – will be used to construct exact gradients of fully discrete quantities of interest. A Discontinuous Galerkin Arbitrary 
Lagrangian–Eulerian (DG-ALE) method [17] is used for the high-order spatial discretization. Previous work on the adjoint 
method for conservation laws on deforming domains predominantly considers a Finite Volume (FV) spatial discretization 
[1–4,18,13,5,19], and recently extended to DG-ALE schemes [20–22]. The DG-ALE discretization is chosen rather than FV 
due to its stable, high-order discretization of convective fluxes. The Geometric Conservation Law (GCL) is satisfied in the 
DG-ALE scheme through the introduction of an element-level auxiliary equation. The fully discrete adjoint equations de-
rived in this work fully incorporate this GCL augmentation [23], ensuring discrete consistency is maintained.

High-order temporal discretization will be achieved using a Diagonally Implicit Runge–Kutta (DIRK) [24] method, marking 
a departure from previous work on unsteady adjoints, which has mostly considered temporal discretization via Backward 
Differentiation Formulas (BDF) [9,18,13,19,22,25], with some work on space–time DG discretizations [23]. Apart from being 
limited to second-order accuracy, if A-stability is required, high-order BDF schemes require special techniques for initializa-
tion [14]. While DIRK schemes require additional work to achieve high-order convergence in the form of additional nonlinear 

1 As with all works on high-order methods, high-order accuracy relies on sufficient regularity in the solution.
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