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A new Markov Chain Monte Carlo method for simulating the dynamics of particle systems 
characterized by hard-core interactions is introduced. In contrast to traditional Kinetic 
Monte Carlo approaches, where the state of the system is associated with minima in 
the energy landscape, in the proposed method, the state of the system is associated 
with the set of paths traveled by the atoms and the transition probabilities for an 
atom to be displaced are proportional to the corresponding velocities. In this way, the 
number of possible state-to-state transitions is reduced to a discrete set, and a direct link 
between the Monte Carlo time step and true physical time is naturally established. The 
resulting rejection-free algorithm is validated against event-driven molecular dynamics: the 
equilibrium and non-equilibrium dynamics of hard disks converge to the exact results with 
decreasing displacement size.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Monte Carlo (MC) stochastic methods are currently well established as numerical tools for unraveling the complex be-
havior of a large variety of systems [1–11]. Most MC algorithms can be divided into two main groups: methods built on the 
importance sampling scheme of Metropolis et al. [12] (all denoted here as MMC [2,13–19]) and kinetic Monte Carlo (KMC) 
methods [20–22].

In MMC, the system evolves through randomly sampled configurations. Each new configuration is accepted or rejected 
according to specific rules to satisfy the Boltzmann equiprobability principle. The possibility of letting the system evolve 
through unphysical trajectories [14,15] makes MMC algorithms particularly efficient for calculating equilibrium properties. In 
fact, they are often preferred over molecular dynamics (MD) in those cases where relaxation times diverge. As representative 
examples, one can mention the melting transition of hard disks [2] and the conformations of the densely crowded molecular 
architectures [3] typical of dendronized polymers [23,24]. The price to pay in MMC is the lack of a physically meaningful 
timescale. In fact, although MMC can be used to obtain information about dynamics [1,5,6,9,10], often only in terms of 
scaling laws, it is at the same time recognized that the analogy between the MMC dynamics and actual time evolution is 
only superficial [1,6,16,19]. In the field of molecular simulations, notable exceptions are Brownian processes [7,25,26] and 
the bond-fluctuation model for polymer chains, which provides a good approximation of the Rouse model [1,16]. However, in 
both cases, the connection to physical time requires a priori knowledge, or at least an estimation, of the diffusion coefficient, 
which is not always easy to predict, especially in concentrated polymeric systems [27]. Additionally, these cases are the 
exceptions rather than the rule, and a general and definitive connection between physical time and the dynamic evolution 
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of molecular systems determined through MMC simulations is still missing despite the many efforts in this direction [13,17,
18,26].

The correct time evolution can be obtained, in principle, through KMC methods, which apply to systems that evolve 
dynamically from state to state, each state being identified with a minimum in the energy landscape [20,21,28]. Voter, for 
example [29], in one of his seminal works, used KMC to study the diffusion of rhodium clusters on Rh(100). In KMC, atomic 
vibrations are neglected, and, provided that one knows all possible states corresponding to the minima of the energy basins, 
a rate catalog for the transitions from one state to another can be build, where the rate constants are calculated using 
the transition state theory [30,31]. Once the rate catalogue is given, the trajectory of the system through such states can be 
obtained by means of a stochastic procedure [20,21,29]. On the other hand, if a system undergoes unexpected reaction path-
ways, the task to identify and quantify all possible states and to build the corresponding rate catalogue becomes extremely 
challenging. To this end, advanced KMC methods have been proposed, where the rate catalogue is built on the fly [22,32]. 
While promising, such methods add some complexity to the algorithm, and, in practice, one can never fully ensure that all 
states have been identified. As a consequence, to date, KMC methods can be used when the number of states is discrete and 
the transition probabilities for the state-to-state transitions are known or easy to identify, but they are not suitable or of 
difficult application for molecular systems evolving in a continuous space characterized by an infinite and unknown number 
of states. The reader can consult a very clear introduction on the topic by Voter for additional details on the pros and cons 
of KMC [21].

Therefore, in general terms, if the interest is in studying the dynamics of a molecular system with full atomistic detail 
(e.g. including the atomic vibrations) and without any a priori knowledge of the system behavior, one has to revert to MD. 
At the same time, it remains an open question whether the same type of information could be obtained by a generally 
valid MC. The aim of this contribution is to reduce the gap between MC and MD by proposing a new Markov Chain MC 
scheme that provides a reasonably accurate description of the dynamics of molecular systems without the above mentioned 
limitations of KMC methods. As a first step towards this goal, the case of systems characterized by hard-core interactions is 
considered here, and the corresponding algorithm is conveniently indicated as Monte Carlo Molecular Dynamics (MCMD). 
In what follows, I first introduce the concepts underlying MCMD and the resulting algorithm. Then, the method is validated 
against event-driven MD in terms of both static and dynamic properties for the case of hard disks in a box. Finally, an 
outlook for possible future generalizations and applications is given.

2. Analogy between motion and reaction network

Let us consider first the equations of motion for N non-interacting hard disks. In the absence of collisions, each disk i
moves along a straight line parallel to its velocity vi according to

dli/dt = vi (1)

where li is the distance traveled by disk i. The system of N equations (Eq. (1)) can be written in terms of the rescaled 
quantities ni = li/δ and ai = vi/δ where the parameter δ is the “unit of displacement”, such that ni represents the number 
of steps δ traveled by disk i:

dni/dt = ai (2)

At the same time, we notice that solving Eq. (2) (and therefore Eq. (1)) is mathematically equivalent to solving a chemical 
reaction network where all reactions are of the external source type

Ø
ai−→ ni (3)

From this view point, ni and ai would represent the number of molecules of species i and the rate parameter of the 
ith reaction generating the species i, respectively. By treating ni as discrete variables, the probabilistic evolution of such 
a system is governed by the master equation

∂ P (t,n)

∂t
=

N∑

i=1

ai[P (t,n1, ...,ni − 1, ...,nN ) − P (t,n)] (4)

where P (t, n) is the probability that the system is in state n = (n1, ..., nN) at time t . In turn, Eq. (4) can be solved using 
a KMC scheme, namely the stochastic simulation algorithm (SSA) [33]. SSA is an iterative algorithm where at each iteration, 
a reaction channel μ is sampled proportionally to the transition probability aμ , named propensity in the terminology of the 
SSA, the state of the system is updated, nμ ← nμ + 1, and the time is advanced of the MC time step [34]

τ = 1

A
= 1/

N∑

i=1

ai (5)

In other words, by restricting the infinite number of possible random displacements to the discrete set of N displace-
ments parallel to the disks velocities, one can identify the state of the system at time t with the number of displacements δ
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