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This work addresses the design of failsafe flux limiters for systems of conserved quantities 
and derived variables in numerical schemes for the equations of gas dynamics. Building on 
Zalesak’s multidimensional flux-corrected transport (FCT) algorithm, we construct a new 
positivity-preserving limiter for the density, total energy, and pressure. The bounds for 
the underlying inequality constraints are designed to enforce local maximum principles 
in regions of strong density variations and become less restrictive in smooth regions. The 
proposed approach leads to closed-form expressions for the synchronized correction factors 
without the need to solve inequality-constrained optimization problems. A numerical study 
is performed for the compressible Euler equations discretized using a finite element based 
FCT scheme.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The ability to enforce local discrete maximum principles and/or positivity preservation for a set of coupled gas dynam-
ics variables is a highly desired property of high-resolution schemes for the compressible Euler equations [13,17,21] and 
constrained interpolation (remapping) algorithms [2,15,16,24] for systems of conserved quantities. Many existing tools for 
constraining the quantities of interest are based on the use of limiting techniques for numerical fluxes associated with os-
cillatory antidiffusive components of a high-order approximation. The underlying design principles trace their origins to the 
classical flux-corrected transport (FCT) algorithm introduced by Boris and Book [3–5] and Zalesak [26] in the 1970s. Löhner et 
al. [18] extended the FCT methodology to unstructured grid finite element methods and systems of conservation laws. The 
first use of flux limiters in the context of remapping goes back to the work of Smolarkiewicz and Grell [22] who proposed 
a class of nonconservative monotone interpolation schemes. Conservative flux-corrected remap (FCR) methods were devel-
oped in [14,17,15,24]. As shown by Bochev et al. [2], the FCR approach to calculating the correction factors is equivalent to 
solving an optimization problem with simple box constraints corresponding to a worst-case scenario. Advanced algorithms 
for constrained optimization-based data transfer were proposed in [1,2,16].

Flux limiting techniques for systems of coupled variables can be classified into sequential [15] and synchronized [14,
17,16,21] algorithms. A sequential limiter constrains each quantity of interest under worst-case assumptions regarding the 
fluxes that depend on other variables. In synchronized FCT algorithms [13,14,18,17], the antidiffusive fluxes are multiplied 
by the minimum of the correction factors for selected control variables. Due to the involved linearizations, such algorithms 
may require additional a posteriori corrections to guarantee the nonnegativity of the pressure and internal energy [14,
27]. In optimization-based synchronized algorithms, different correction factors may be used in different conservation laws 
provided that the imposed constraints are satisfied for each quantity of interest [16]. However, the cost of coupled flux 
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optimization is rather high, which has led Bochev et al. [1] to favor globally conservative formulations of the constrained 
remap problem.

In this paper, we improve the synchronized FCT algorithm presented in [13,14] by introducing new limiters for the 
energy and pressure. In contrast to approaches that rely on linearized transformations of variables, the proposed limiting 
strategy does not involve any linearizations and guarantees positivity preservation without a posteriori fixes. Moreover, the 
bounds for FCT are designed to prevent unnecessary limiting in regions of constant pressure. The calculation of correction 
factors for the synchronized FCT limiter does not require solving inequality-constrained optimization problems, which makes 
it an inexpensive alternative to synchronized optimization-based limiters [2,16]. The ability of the proposed algorithm to 
handle shocks and contact discontinuities is illustrated by a numerical study for the Euler equations.

2. Synchronized flux limiting

Consider a system of conservation laws for U = [ρ, ρv, ρE]T , where ρ is the density, v is the velocity and E is the 
total energy. In the case of an ideal polytropic gas, the pressure p is given by the equation of state

p = (γ − 1)

(
ρE − |ρv|2

2ρ

)
, (1)

where γ stands for the constant ratio of specific heats (γ = 1.4 for air).
Let Ui denote a numerical approximation to the vector U of gas dynamics variables at the ith nodal point or control 

volume. The simplest representatives of flux-corrected transport (FCT) and flux-corrected remapping (FCR) algorithms are 
based on the following predictor–corrector strategy:

1. Calculate a low-order approximation U L
i using a numerical scheme which is guaranteed to satisfy all relevant maximum 

principles.
2. Decompose the difference between U L

i and a high-order approximation U H
i into a sum of antidiffusive fluxes Fij =

[ f ρ
i j , f

ρv
i j , f ρE

i j ]T such that

mi U
H
i = mi U

L
i +

∑
j �=i

F i j, F ji = −Fij, (2)

where mi is a positive diagonal entry of the (lumped) mass matrix.
3. Multiply Fij and its companion F ji by a solution-dependent correction factor αi j ∈ [0, 1] such that the flux-corrected 

approximation

mi Ui = mi U
L
i +

∑
j �=i

αi j F i j, α ji = αi j (3)

satisfies inequality constraints of the form

umin
i ≤ ui ≤ umax

i (4)

for each scalar quantity of interest u (density, energy, pressure etc.).

Following [14,18], we will limit all components of Fij using the same scalar correction factor αi j . The choice αi j ≡ 1
corresponds to the high-order approximation U H

i , whereas αi j ≡ 0 corresponds to the low-order approximation U L
i . Since 

the latter is assumed to satisfy the maximum principles, the bounds for (4) are commonly defined in terms of U L as 
follows:

umax
i = max

j∈N (i)
uL

j , umin
i = min

j∈N (i)
uL

j , (5)

where uL
i is the low-order approximation to the quantity of interest and N (i) is the set of nodes containing i and its nearest 

neighbors j �= i. Throughout this paper, the shorthand notation “ j �= i” is used for j ∈N (i)\{i}.
For a scalar conserved quantity u, nearly optimal correction factors αi j can be calculated using Zalesak’s multidimensional 

FCT limiter [26] which we use to constrain the density (u = ρ) in the next section. The design of FCT algorithms for systems 
is more involved because of the strong coupling between the quantities of interest [13,18]. For example, any antidiffusive 
correction to ρi may produce an undershoot or overshoot in vi := (ρv)i

ρi
and/or E := (ρE)i

ρi
even if the values of (ρv)i and 

(ρE)i remain unchanged. Similarly, any adjustment of the conservative variables may result in a violation of local bounds 
for the pressure p defined by the equation of state (1). Hence, possible changes in the values of derived quantities must be 
taken into account when it comes to limiting the changes in the conservative variables.

In the next three sections, we present a new synchronized FCT algorithm for constraining the density, energy, and 
pressure. After formulating the inequality constraints for each variable, we derive upper bounds for the correction factors 
αi j and design practical algorithms for enforcing these bounds.
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