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A Bayesian computational approach is presented to provide a multi-resolution estimate of 
an unknown spatially varying parameter from indirect measurement data. In particular, 
we are interested in spatially varying parameters with multiscale characteristics. In our 
work, we consider the challenge of not knowing the characteristic length scale(s) of 
the unknown a priori, and present an algorithm for on-the-fly scale determination. Our 
approach is based on representing the spatial field with a wavelet expansion. Wavelet 
basis functions are hierarchically structured, localized in both spatial and frequency 
domains and tend to provide sparse representations in that a large number of wavelet 
coefficients are approximately zero. For these reasons, wavelet bases are suitable for 
representing permeability fields with non-trivial correlation structures. Moreover, the intra-
scale correlations between wavelet coefficients form a quadtree, and this structure is 
exploited to identify additional basis functions to refine the model. Bayesian inference is 
performed using a sequential Monte Carlo (SMC) sampler with a Markov Chain Monte 
Carlo (MCMC) transition kernel. The SMC sampler is used to move between posterior 
densities defined on different scales, thereby providing a computationally efficient method 
for adaptive refinement of the wavelet representation. We gain insight from the marginal 
likelihoods, by computing Bayes factors, for model comparison and model selection. The 
marginal likelihoods provide a termination criterion for our scale determination algorithm. 
The Bayesian computational approach is rather general and applicable to several inverse 
problems concerning the estimation of a spatially varying parameter. The approach is 
demonstrated with permeability estimation for groundwater flow using pressure sensor 
measurements.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

With advances in the computational sciences, practitioners are placing increasing reliance on complex physical models. 
These models have many unknown parameters that need to be inferred from experimental data. The identification of a 
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spatially varying parameter, or a field, is often an important task. A typical example is the permeability estimation of the 
aquifer for subsurface flow [1]. The approach taken in the paper is, however, applicable to a large number of data-driven 
inverse problems arising in the physical sciences and engineering.

It is often the case that the spatially varying parameter must be recovered from limited data that is corrupted by noise. 
For these reasons, the Bayesian approach to inverse problems is preferred [2,3]. Moreover, the Bayesian approach allows us 
to incorporate prior knowledge into the model and provides a way of quantifying uncertainty in the solution.

Spatially varying parameters often belong to an infinite-dimensional space and intrinsically have multiscale character-
istics [4]. In particular, permeability fields are essentially non-stationary with nontrivial correlation structures [5–8]. This 
significantly complicates forward uncertainty quantification analysis [9,10]. In the context of inverse analysis, the unknown 
field is often found by discretizing with a truncated spectral expansion and performing inference over a finite number of 
coefficients. In practice, the characteristic length scale of the unknown cannot be inferred directly from the observation data. 
The existing approaches tend to require strong assumptions about the scale of estimation, whereas we adopt a data-driven 
approach to choose a suitable model.

It is common practice to discretize the unknown parameter into a finite number of piecewise constant basis func-
tions [11]. Standard models for spatial data, such as Gaussian processes and Markov random fields, may then be used 
to model the spatially varying parameter [4,12,13]. Whilst the Karhunen–Loève expansion may be used to construct an 
optimal basis, the covariance structure of the true permeability field is unknown [14]. A more recent approach uses a 
number of piecewise constant level sets [15]. Fourier basis functions have also been used to introduce a desired level of 
smoothness [16], however these parameterizations are not localized in both spatial and frequency domains. In choosing such 
parameterizations, strong assumptions are made about the field being inferred and these methods are generally not well-
suited for fields with non-trivial correlation structures. Sparse interpolation schemes have also been used to parametrize the 
unknown property field [17]. For example, an adaptive Bayesian approach using a hierarchical sparse grid approximation to 
represent the unknown field was first presented in [18]. However, these methods tend to perform poorly on fields with 
sharp variations.

To this end, we parameterize the spatially varying parameter using a multi-resolution analysis [19]. Multi-resolution 
analysis has received a great deal of attention over the recent decades. The idea is to construct a wavelet expansion to 
capture localized structures over different length scales. Two significant applications of multi-resolution analysis include 
the discrete cosine transform and the discrete wavelet transform, used commonly for image compression [20,21]. For this 
reason, wavelet-bases are promising candidates for the parameterization of a spatially varying parameter with multiscale 
characteristics.

In parameterizing the spatially varying parameter, it is common practice to fix, a priori, either the length scale, number of 
length scales or the number of terms in a spectral expansion. In practice, it is not known a priori whether these restrictions 
are reasonable. We refer to this as the problem of ‘scale determination’ and recognize this as a model selection problem. 
Opting for a model of excessive complexity results in over-fitting and the task of inference becomes needlessly difficult. 
Conversely, an overly constrained model will not capture the most salient features. In the statistical literature, it is common 
practice to use the marginal likelihood to address the task of model selection [22].

Wavelet coefficients are hierarchical in nature and tend to be clustered around either ‘high’ or ‘low’ states [4]. Moreover, 
there are intra-scale correlations such that parent coefficients with small values are more likely to have children coefficients 
with small values. The hierarchical structure may be illustrated with a quadtree, which may be exploited when forming 
hierarchical models [23,24]. Additional insight can be gained by viewing wavelets on one scale as a correction to the 
representation at a coarser scale. Negligible wavelet coefficients therefore provide an indication that there are sufficient 
basis functions in the local region and that there would likely be a negligible contribution from the corresponding children 
wavelets. We use these ideas to develop an on-the-fly scale determination algorithm to adaptively refine the wavelet basis.

Bayesian inference is performed using the sequential Monte Carlo (SMC) [25–27] algorithm. SMC uses sequential im-
portance sampling (SIS) to gradually move a particle approximation for an initial density, so that it becomes a particle 
approximation for a more complex, sometimes multi-modal, density. We use SMC for both Bayesian inference in a fixed 
model and for scale determination. In the latter case, we move a particle approximation from one posterior density to 
another and compare Bayes factors. When moving between posterior densities, the SMC method allows information from 
previous computations to be used efficiently. The SMC algorithm used in this paper is directly parallelizable.

In summary, the key contributions of this paper include the following in the context of Bayesian approaches to multiscale 
inverse problems:

• Application of multi-resolution analysis to multiscale inverse problems to obtain a hierarchical, wavelet-based represen-
tation of a spatially varying parameter.

• On-the-fly scale determination algorithm that provides an adaptive approach to model selection for our representation 
of the spatially varying parameter.

The rest of the paper is structured as follows. In Section 2, we present our method of parameterizing the spatially varying 
parameter, using a wavelet expansion. We first consider a fixed scale model, by fixing the truncation of the wavelet expan-
sion. In Section 3, a Bayesian model for the fixed scale representation is presented. SMC is used to explore the resulting 
posterior densities. In Section 4, we address the issue of scale determination and propose an on-the-fly scale determination 
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