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In this paper we introduce adaptive time step control for simulation of the evolution of ice 
sheets. The discretization error in the approximations is estimated using “Milne’s device” 
by comparing the result from two different methods in a predictor–corrector pair. Using a 
predictor–corrector pair the expensive part of the procedure, the solution of the velocity 
and pressure equations, is performed only once per time step and an estimate of the 
local error is easily obtained. The stability of the numerical solution is maintained and 
the accuracy is controlled by keeping the local error below a given threshold using PI-
control. Depending on the threshold, the time step �t is bound by stability requirements 
or accuracy requirements. Our method takes a shorter �t than an implicit method but with 
less work in each time step and the solver is simpler. The method is analyzed theoretically 
with respect to stability and applied to the simulation of a 2D ice slab and a 3D circular 
ice sheet. The stability bounds in the experiments are explained by and agree well with 
the theoretical results.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

There is a growing interest in the prediction of the evolution of the large ice sheets on Antarctica and Greenland and 
their contribution to the future sea level rise [1–4]. Simulations of the dynamics of ice sheets in the past and in the future 
have been made, see e.g. [5,6], but improvements in the modeling and the numerical methods are required for better 
fidelity, accuracy, and efficiency [7]. In this paper, we introduce a method to automatically choose the time steps to control 
the discretization error and stability of the time integration of the governing system of partial differential equations (PDEs).

The full Stokes (FS) equations for the velocity field in the ice and an advection equation for the evolution of the ice 
surface are regarded as an accurate model of the motion of glaciers and ice sheets [8–10]. The viscosity in the FS equations 
depends non-linearly on the velocity. The numerical solution of the equations is therefore demanding in terms of compu-
tational time. Hence, different simplifications of the FS equations have been derived under various assumptions to reduce 
the computing effort. The shallow ice approximation (SIA) is based on the assumption that the thickness of the ice in the 
vertical direction is small compared to a length scale in the horizontal direction [8]. Other approximations are the shallow 
shelf approximation (SSA) [11,10] and the Blatter–Pattyn model [12,13]. Comparisons between solutions of the FS equations 
and the SIA equations are found in [14–16]. The Ice Sheet Coupled Approximation Levels (ISCAL) is an adaptive method 
using SIA or FS in different parts of the ice sheet [17,18].

Numerical models have been implemented in codes for simulation of large ice sheets. They are often using a finite 
element method for the FS equations or approximations of them as in [19–23] or a finite volume method as in [24]. The 
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PDE to evolve the thickness of the ice is time dependent and in the discretization of the time derivative a time step �t
has to be chosen for accuracy and stability. The stability of a class of one-step schemes with a θ -parameter for the time 
derivative has been analyzed in [25]. Restrictions on �t are derived by Fourier analysis of the linearized equations. If �x is 
the distance between the nodes in the space discretization then �t ≤ C∗�x2 for some constant C∗ . These one-step schemes 
are applied to large ice sheets in [26].

The discretization of the PDE in space gives a system of ordinary differential equations (ODEs). In the numerical solution 
of initial value problems for ODEs, the time step is often chosen to control the estimated local error in the time discretization 
[27–29]. Given the error estimate and the present time step, a new time step is selected to the next time point such that 
an error tolerance is satisfied and the solution remains stable [30].

We introduce adaptive time step control (or step size control) for simulation of the ice sheet equations in the community 
ice sheet model Elmer/Ice [19]. Then the time step varies in the time interval of interest and there is no need to guess 
a stable and sufficiently accurate �t for the whole interval in the beginning of the simulation. Spatial derivatives are 
approximated by the finite element method in Elmer/Ice. The mesh is extruded in the vertical direction from a triangular or 
quadrilateral mesh in the horizontal plane. It is adjusted in every time step to follow the free boundary at the ice surface. 
The dominant part of the computational effort is spent on the solution of the equations for the velocity and the pressure in 
the ice.

The discretization error in the approximations is estimated using “Milne’s device” by comparing the result from two 
different methods in a predictor–corrector pair of Adams type of first and second order accuracy in time [27,31]. The 
advantage with a predictor–corrector pair is that the expensive part of the procedure, the solution of the velocity and 
pressure equations, is performed only once per time step and that an estimate of the local error is easily obtained. The time 
step �t is chosen to fulfill an error tolerance using PI control according to Söderlind et al. [29,30]. There is a bound on 
�t depending on �x2 as in [25]. An unconditionally stable method would allow longer �t but also require a fully implicit 
method and the solution of several different velocity equations in the iterations to compute the solution in every time step.

The outline of the paper is as follows. The equations that govern the evolution of the ice sheets are stated in Section 2. 
The predictor method is the Forward Euler method or the second order Adams–Bashforth method and the corrector method 
is the Backward Euler method or the second order Adams–Moulton method (also referred to as the trapezoidal method) 
[27] or simplifications of them. The methods are combined in Section 3 to solve for the velocities using FS, SIA, or ISCAL 
and the advection equation for the thickness. In Section 4, the time step control is introduced. The stability of the methods 
applied to the thickness equation with the velocity from the SIA equation is analyzed as in [25] in Section 5. In Section 6, 
the stability of the predictor–corrector scheme is investigated. The time step control is tested in Section 7 by simulation 
over long time intervals of examples in two and three dimensions from [17,32,33] using the SIA, FS, and ISCAL solvers in 
Elmer/Ice [17,19]. Conclusions are drawn in the final Section 8.

2. Equations governing the ice sheet dynamics

In this section we describe the equations and solvers for the flow of ice sheets.

2.1. The full Stokes (FS) equations

The flow of an ice sheet can be modeled by the non-linear FS equations [9]. These equations are defined by conservation 
of mass

∇ · v = 0, (1)

conservation of momentum

ρ
Dv

Dt
= −∇p + ∇ · TD + ρg, (2)

and a constitutive equation, the so called Glen’s flow law

D = A(T ′) f (σ )TD . (3)

Here v is the vector of velocities v = (
vx v y vz

)T
, ρ is the density of the ice and p is the pressure. The deviatoric stress 

tensor TD is given by

TD =
⎛
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where t D
xx , t D

yy , t D
zz and t D

xy denote longitudinal stresses and t D
xz , t D

yz vertical shear stresses. We also have symmetry txy = t yx , 
txz = tzx and t yz = tzy . The gravitational acceleration in the z-direction is denoted by g, and the total time derivative of the 
velocity by Dv

Dt which is very small and neglected in glaciological applications. Glen’s flow law (3) relates the stress and 
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