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Abstract

The finite volume (FV) method with exact two-material Riemann problems (FIVER) is an Eulerian com-
putational method for the solution of multi-material flow problems. It is robust in the presence of large
density jumps at the fluid-fluid interfaces, and the presence of large structural motions, deformations, and
even topological changes at the fluid-structure interfaces. To achieve simplicity in implementation, it ap-
proximates each material interface by a surrogate surface which conforms to the control volume boundaries.
Unfortunately, this approximation introduces a first-order error of the geometric type in the solution pro-
cess. In this paper, it is first shown that this error causes the original version of FIVER to be inconsistent
in the neighborhood of material interfaces and degrades its global order of spatial accuracy. Then, an
enhanced version of FIVER is presented to rectify this issue, restore consistency, and achieve for smooth
problems the desired global convergence rate. To this effect, the original definition of a surrogate material
interface is retained because of its attractive simplicity. However, the solution at this interface of a two-
material Riemann problem is enhanced with a simple reconstruction procedure based on interpolation and
extrapolation. Next, the extrapolation component of this procedure is equipped with a limiter in order to
achieve nonlinear stability for non-smooth problems. In the one-dimensional inviscid setting, the resulting
FIVER method is also shown to be total variation bounded. Focusing on the context of a second-order
FV semi-discretization, the nonlinear stability and second-order global convergence rate of this enhanced
FIVER method are illustrated for several model multi-fluid and fluid-structure interaction problems. The
potential of this computational method for complex multi-material flow problems is also demonstrated with
the simulation of the collapse of an air bubble submerged in water and the comparison of the computed
results with corresponding experimental data.

Keywords: embedded boundary method, finite volume method, immersed boundary method, large
density jump, multi-material, multi-phase, total variation bounded, two-phase Riemann solver

1. Introduction

FIVER (finite volume method with exact two-material Riemann problems) is a finite volume (FV)
method for the solution of multi-material, fluid and fluid-structure interaction (FSI) problems. Its underlying
semi-discretization procedure is based on the solution of local, one-dimensional, two-material Riemann
problems. It was originally developed in [1], in the context of explicit time-discretizations, for the solution
of compressible, inviscid, two-phase flow problems characterized by simple equations of state (EOS) but large
contact discontinuities (density jumps). However, it is equally applicable to the solution of incompressible,
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