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Atomistic/continuum coupling methods combine accurate atomistic methods and efficient 
continuum methods to simulate the behavior of highly ordered crystalline systems. 
Coupled methods utilize the advantages of both approaches to simulate systems at a 
lower computational cost, while retaining the accuracy associated with atomistic methods. 
Many concurrent atomistic/continuum coupling methods have been proposed in the past; 
however, their true computational efficiency has not been demonstrated. The present 
work presents an efficient implementation of a concurrent coupling method called the 
Multiresolution Molecular Mechanics (MMM) for serial, parallel, and adaptive analysis. 
First, we present the features of the software implemented along with the associated 
technologies. The scalability of the software implementation is demonstrated, and the 
competing effects of multiscale modeling and parallelization are discussed. Then, the 
algorithms contributing to the efficiency of the software are presented. These include 
algorithms for eliminating latent ghost atoms from calculations and measurement-based 
dynamic balancing of parallel workload. The efficiency improvements made by these 
algorithms are demonstrated by benchmark tests. The efficiency of the software is found 
to be on par with LAMMPS, a state-of-the-art Molecular Dynamics (MD) simulation code, 
when performing full atomistic simulations. Speed-up of the MMM method is shown to 
be directly proportional to the reduction of the number of the atoms visited in force 
computation. Finally, an adaptive MMM analysis on a nanoindentation problem, containing 
over a million atoms, is performed, yielding an improvement of 6.3–8.5 times in efficiency, 
over the full atomistic MD method. For the first time, the efficiency of a concurrent 
atomistic/continuum coupling method is comprehensively investigated and demonstrated.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

A concurrently coupled atomistic/continuum method exploits both highly accurate atomistic method and highly efficient 
continuum method simultaneously, in order to lower the cost of simulations while retaining high accuracy. Atomistic simu-
lations provide atomistic details of the deformation mechanisms, such as breaking and rearrangement of bonds [1]; however, 
this method has a high computational expense. On the other hand, a continuum computational framework (such as finite 
element method (FEM)) is well-established and very efficient, but fails at the atomistic scale, as it completely ignores the 
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inherent discrete structure of the material, leaving the physical underpinnings weak [2]. In addition to the advantages and 
disadvantages of atomistic and continuum approaches, the deformation and failure of many engineering materials are inher-
ently multiscale, as the observed phenomena occur at many different length and time scales [3]. These macroscopic events 
are actually the results of microscopic events happening at much smaller length scales. The disparity between length scales 
is as large as 1010, which is computationally intractable without a multiscale model [4].

In atomistic/continuum multiscale methods, the primary motivation is to systematically reduce the total number of 
degrees of freedom, while retaining sufficient accuracy. Reduction in the total number of degrees of freedom is best guided 
by the following insight: only a small portion of atoms actually undergo localized deformation, such as dislocation and 
stacking fault motion, while the remaining atoms undergo non-localized deformation, such as tension and compression [5]. 
The regions with localized deformation are physically more important, and hence these localized regions are represented 
by the more accurate atomistic description, while the much larger remaining portion of the domain with non-localized 
deformation is handled by an efficient continuum method. For this approach to be effective, the deformation needs to be 
free from abrupt changes in the continuum region.

To achieve this, the Multiresolution Molecular Mechanics (MMM) method [6] systematically eliminates the degrees of 
freedom from a full atomistic system by coarse-graining the non-localized regions using finite elements, while retaining an 
atomistic description for the localized regions. In the MMM method, the energy of a few, carefully selected atoms within 
the same mesh element are sampled and employed to compute the energy of all ghost atoms (i.e., eliminated degrees of 
freedom) in the element. The positions of the ghost atoms in each element are interpolated from the positions of the rep 
atoms (mesh nodes) via finite element shape functions. As a result of the reduction in degrees of freedom, and an efficient 
energy sampling scheme, calculation of the energy of and the force on the ghost atoms is no longer needed, resulting in 
higher computational efficiency. The rationale and formulation of the MMM method will be further discussed below. Thus 
far, the MMM method has been introduced for statics [6] and dynamics [7], followed by convergence and error structure 
analysis [8], as well as formulation of a unified and consistent framework for general finite element (FE) shape functions [9]. 
Recently, an adaptivity analysis has also been presented [10]. The accuracy of the MMM method has been well established 
by our earlier works, but its efficiency has not been investigated beyond the effect of the reduction in degrees of freedom.

Likewise, there have been very few works regarding the implementation and efficiency of other atomistic/continuum 
multiscale methods. Xiao et al. presented task and data decomposition in atomistic, continuum, and bridging domains of the 
Bridging Domain (BD) method; however, this demonstration was limited to a one-dimensional wave propagation example 
[11]. Anciaux et al. presented a parallel implementation of the BD method on a 2-D crack example, which showed load 
imbalance due to coupling overheads [12]. Fox et al. presented a parallelization of their multiscale method using MPI and 
demonstrated up to 3.12 times speed-up in simulation time [13]. In addition, there are initiatives to build computational 
libraries [14] and software infrastructure [15] for multiscale modeling and simulation.

Since the MMM method retains the fundamental nature and functions of the original molecular mechanics method, 
the details of its implementation will be based on the original method. Molecular mechanics prioritizes proper and efficient 
sampling of phase space rather than high accuracy, and this can be well achieved by symplectic integrators [16]. Phase space 
can be explored using minimization algorithms, such as, the conjugate gradient method [17], special relaxation algorithms 
[18], or using MD [19]. Our focus is on the latter approach, which solves Newton’s equations of motion (2nd law) given by 
the following equation:

mi
dvi

dt
=

∑
j

F2(ri, r j) +
∑

j

∑
k

F3(ri, r j, rk) + · · ·
dri

dt
= vi

(1)

where m is the mass, v is the velocity, r is the position, F2 is the two-body force function, F3 is the three-body force 
function, t is the time, and i, j, k are the atom indices. Usually, the terms beyond the first few are excluded and their 
effects, along with quantum effects, are represented by the remaining terms [20]. The force term in Equation (1) is equal 
to the derivative of the potential energy with respect to the position of the atom. The potential energy of an MD system is 
given by the following equation:

E = Ebonded + Eelectrostatic + Evan der Waals (2)

where E is potential energy with subscripts denoting the source. In the current work, the first two terms in Equation (2)
are neglected, since the last term introduces adequate level of computational complexity to discuss the ideas presented. The 
last term represents non-bonded interactions, whose effects decay quickly with an increasing distance [21]. Therefore, the 
interatomic interactions beyond a certain distance (rc ) are truncated, or “cutoff”. Due to this reduction, force calculations 
scale with O (Nr3

c ρ) instead of N2, where N is the number of atoms and ρ is the number of atoms per unit volume. In 
some cases, a correction is used to compensate for the effects of the cutoff region.

An efficient way to numerically integrate the equations of motion is the Velocity-Verlet scheme, which is symplectic, 
time-reversible, conserves linear and angular momentum, and requires one force evaluation per time step; it is second order 
accurate (its error is proportional to �t2) [16]. Despite the cutoff and efficient integration, the MD method deals with very 
small length and time scales and hence is highly computationally demanding [20]. The force calculation in MD simulation 



Download English Version:

https://daneshyari.com/en/article/4967915

Download Persian Version:

https://daneshyari.com/article/4967915

Daneshyari.com

https://daneshyari.com/en/article/4967915
https://daneshyari.com/article/4967915
https://daneshyari.com

