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The application of pseudo-symplectic Runge–Kutta methods to the incompressible Navier–
Stokes equations is discussed in this work. In contrast to fully energy-conserving, implicit 
methods, these are explicit schemes of order p that preserve kinetic energy to order q, with 
q > p. Use of explicit methods with improved energy-conservation properties is appealing 
for convection-dominated problems, especially in case of direct and large-eddy simulation 
of turbulent flows. A number of pseudo-symplectic methods are constructed for application 
to the incompressible Navier–Stokes equations and compared in terms of accuracy and 
efficiency by means of numerical simulations.

© 2016 Published by Elsevier Inc.

1. Introduction

Discrete conservation of kinetic energy is an important requirement in the numerical solution of the incompressible 
Navier–Stokes equations. In the inviscid limit, the global kinetic energy e = ∫

�
u2

i /2 dV (i.e. the kinetic energy integrated 
over the domain �) is an invariant of the continuous equations when periodic or homogeneous boundary conditions are 
applied [1]. The reproduction of this property on a discrete level is especially important when dealing with turbulent 
flow simulations, in the framework of either Direct (DNS) or Large-Eddy Simulation (LES) techniques. Enforcing discrete 
conservation of kinetic energy can lead to a number of desirable features, such as zero or negligible artificial dissipation, a 
well represented energy transfer mechanism as well as a nonlinear stability bound to the numerical solution [2–4].

The Navier–Stokes equations are usually tackled numerically by means of a semi-discrete approach, in which the var-
ious terms are first discretized in space and then integrated in time. In general, both the space discretization and time 
advancement algorithms contribute to violation of the discrete conservation of kinetic energy in the inviscid limit [5]. While 
various methods are available to accomplish spatial conservation, only a limited class of numerical algorithms can provide 
this property for the time-advancement step. These methods are necessarily implicit [6], and the application of fully implicit 
schemes to the Navier–Stokes equations presents several drawbacks. It is computationally expensive, especially when man-
aging very large systems, and it is difficult to be carried out efficiently for massively parallel architectures. Explicit methods 
with optimal energy-preserving properties are thus warranted.

In this short note, the use of pseudo-symplectic Runge–Kutta (RK) schemes for time-integration of the Navier–Stokes 
equations is investigated. These are explicit methods that preserve quadratic invariants approximately up to a certain order 
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of accuracy, and were introduced in the context of Hamiltonian systems [7,8]. The application of such schemes to the fluid 
flow equations is appealing and appears to have never been pursued in the available literature. Existing as well as newly 
derived pseudo-symplectic methods are constructed and optimized for application to the Navier–Stokes equations.

The short note is organized as follows. Details about the spatial and temporal discretization are briefly recalled in Sec-
tion 2. Newly derived as well as existing pseudo-symplectic schemes are presented in Section 3. The performances of three 
selected methods are discussed in Section 4 by means of numerical tests. Concluding remarks are given in Section 5.

2. Spatial and temporal discretizations

The incompressible Navier–Stokes equations in Cartesian coordinates read:

∂ui

∂t
+ ∂u jui

∂x j
= − ∂ p

∂xi
+ 1

Re

∂2ui

∂x j∂x j
, (1)

∂ui

∂xi
= 0, (2)

where summation over repeated indices is assumed. In the framework of finite-difference or finite-volume methods, a 
semi-discrete version of Eqs. (1–2) can be expressed as

du

dt
+ C(u)u = −Gp + 1

Re
Lu, (3)

Mu = 0, (4)

where u is the discrete velocity vector containing the three components on the three-dimensional mesh, u = [
ux uy uz

]T , 
the matrices G ∈ R Nu×N p and M ∈ R N p×Nu are the discrete gradient and divergence operators, respectively, while L ∈ R Nu×Nu

is the block-diagonal Laplacian operator. The convective term is expressed as the product of a linear convective operator 
C(u) and u. The specific forms of the operators C, L, G and M depend upon the details of the discretization scheme. For the 
sake of simplicity, equally spaced Cartesian grids will be considered in the following. This hypothesis does not prevent the 
generality and can be easily extended by considering a relevant inner product. It will also be assumed that the differential 
operators are discretized consistently, e.g. GT = −M. Note that the index-2 Differential Algebraic Equation (DAE) system of 
Eqs. (3–4) can be recast concisely by enforcing the incompressibility constraint through the solution of the pressure Poisson 
equation [9]. Substitution of the constraint leads to the ODE system

du

dt
= PF (u)u, (5)

where F = −C(u) + 1
Re L and the projection operator P = I − GL−1M, with L= MG, has been introduced.

This work is focused on the evolution of discrete kinetic energy. A global kinetic energy is defined as E = uT u/2, and its 
semi-discrete evolution equation reads

dE

dt
= −uT C(u)u − uT Gp + 1

Re
uT Lu. (6)

In Eq. (6), the only physical contribution is due to the diffusive term, that correctly dissipates energy since L is a negative-
definite matrix. The pressure gradient contribution vanishes if GT = −M and Mu = 0. It is useful to recall that this is true for 
regular or staggered arrangements of flow variables (using the terminology given in [10]), whereas pressure can contribute to 
the kinetic energy balance in collocated layouts as an error of order O(�t2�x2) [11]. The convective term preserves energy 
if a skew-symmetric operator is adopted [12]. This property can be achieved in various ways; most notably, one can either 
discretize the so-called skew-symmetric form of convection [13], or adopt a proper staggered arrangement for the flow vari-
ables, with the convective term discretized in conservative formulation [14,10]. In the latter case, simultaneous enforcement 
of discrete mass conservation is required. In this work, discretely energy-conserving spatial schemes will be employed. In 
such cases, Eq. (5) forms a system of ODE possessing global kinetic energy as a quadratic invariant, for Re → ∞.

This short note is focused on numerical methods that are capable of preserving energy also for the time-advancement 
step. In general, time integration schemes do not preserve the quadratic invariants of the continuous system of ODE. While 
all RK and linear multistep methods preserve linear invariants [15], multistep schemes do not preserve quadratic invariants, 
while this is possible for some special implicit Runge–Kutta methods.

A general s-stage Runge–Kutta method applied to Eq. (5) can be expressed as

un+1 = un + �t
s∑

i=1

bĩF(ui)ui (7)

ui = un + �t
s∑

j=1

ai j̃F(u j)u j , (8)
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