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We show that one can formulate second-order field- and flux-interpolated constrained 
transport/central difference (CT/CD) type methods as cell-centered magnetic vector po-
tential schemes. We introduce four vector potential CTA/CDA schemes – three of which 
correspond to CT/CD methods of Tóth (2000) [1] and one of which is a new simple flux-
CT-like scheme – where the centroidal vector potential is the primal update variable. These 
algorithms conserve a discretization of the ∇ · B = 0 condition to machine precision and 
may be combined with shock-capturing Godunov type base schemes for magnetohydro-
dynamics. Recasting CT in terms of a centroidal vector potential allows for some simple 
generalizations of divergence-preserving methods to unstructured meshes, and potentially 
new directions to generalize CT schemes to higher-order.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that maintaining Maxwell’s ∇ ·B = 0 equation is important for numerically solving the magnetohydrody-
namics (MHD) equations [2–4,1]. Keeping the magnetic field divergence-free is necessary for stability and accuracy. Simple 
finite volume numerical methods for MHD do not accomplish this, and as a result can be unstable or show numerical arti-
facts. The gold-standard solution to this problem is to use a staggered-mesh representation: the constrained transport (CT) 
approach [4], originally developed in the context of electrodynamics [5]. This method has machine-precision control on the 
divergence of B. Most modern MHD codes employ the CT approach [6–10].

Alternatively, one may evolve instead the magnetic vector potential A, and take curl B = ∇ ×A to obtain a divergence-free 
magnetic field by construction. However, it has often been stated in the literature that the disadvantage of this approach is 
that the order of spatial derivatives increases by one, which reduces the order of accuracy by one [4,1]. In this paper, we 
show that such a statement is not necessarily true: there exist cell-centered magnetic vector potential reformulations of CT 
approaches, which keep the order of accuracy by nature of being equivalent to the original formulations.

It is already known that in the framework of the CT approach, instead of updating face-averaged magnetic fields on 
the staggered mesh, one may equivalently update an underlying magnetic vector potential on the edges of cells [4,1]. This 
approach has been employed successfully in some existing codes [11,12]. However, in this work we show that cell-centered
formulations of CT are also possible and are beneficial because they can be simpler to implement and generalize to unstruc-
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tured grids (especially moving or adaptive grids), and also improve memory requirements and memory access. Face-centered 
formulations of CT for unstructured grids are, of course, possible, and have been recently developed [13–15].

In this paper, we present four centroidal vector potential constrained transport methods. We call these methods flux-CTA, 
field-CTA, flux-CDA, field-CDA. These methods are akin to the flux- and field-interpolated CT and central difference (CD) 
schemes summarized and compared in [1]. In fact, we show the field-CTA, flux-CDA, field-CDA formulations are equivalent to 
field-CT [16,17], flux-CD [1], field-CD [1] respectively, and flux-CTA closely resembles flux-CT [18] but uses a more extended 
stencil. We restrict our focus to 2D Cartesian grids, but in general the methods may be extended to unstructured grids, and 
we have recently done so for the field-CDA method in [19].

Our centroidal vector potential schemes are different from the centroidal vector potential schemes of [20,21], where the 
authors evolve the induction equation for A assuming that the velocity flow is fixed by the base-scheme, and the method 
assumes A is differentiable. In our approach, the induction equation for A is evolved by the electric field obtained from the 
base scheme, which is responsible for making it equivalent to CT schemes.

We note that many flavors of CT algorithms exist, including modifications to the flux-CT schemes that reduce exactly to 
the equivalent one-dimensional solver for plane-parallel, grid-aligned flow [22–24]. Thus other, more sophisticated cen-
troidal vector potential scheme formulations are possible to design. Here, we restrict ourselves to constructing vector 
potential schemes similar to the second-order schemes of [1]. But in general it may be possible to incorporate many of 
the recent advances in face-centered CT into centroidal vector potential schemes.

A number of important advancements have been made to the CT algorithm in the recent years. First, face-centered for-
mulations of CT have been extended to and tested on arbitrary unstructured meshes in [13–15], including moving Voronoi 
meshes [13]. Second, genuinely multi-dimensional Riemann solvers have been developed for two- and three-dimensional 
problems [25–27], and can be designed for use on unstructured meshes as well [28,15]. These Riemann solvers accept in-
put from all the neighboring states that come together at a face and output multi-dimensionally upwinded fluxes in all 
directions. Having the multi-dimensionally upwinded property has been shown to be important for stability in extreme 
applications. Third, globally divergence-free reconstruction techniques have been developed in [29–31]. Such techniques are 
important for divergence-free reconstruction of adaptively refined meshes, as well as achieving higher-order divergence-
free reconstruction. Fourth, CT implementations, incorporating many of the mentioned advancement techniques, have been 
extended to higher-order (i.e., beyond second-order) [15,30,31]. We note that some of the basic CT schemes presented 
in [1], on which we base our methods, are not directly extendable beyond second-order, but may be combined with 
multi-dimensional Riemann solvers and unstructured meshes. The scope of the present work investigates cell-centered 
vector potential versions of CT in the simplest second-order formulations, and extensions to higher-order and use of multi-
dimensional Riemann solvers are left for future work.

The paper is organized as follows. In Section 2 we lay out basic notation. Section 3 describes the four CT schemes 
expressed in terms of centroidal vector potentials. Numerical testing of the methods are shown in Section 4. Concluding 
remarks are offered in Section 5. The manuscript follows the notation of [1] in order to facilitate the connection between 
the CTA/CDA and CD/CT schemes.

2. Equations, notation, and base scheme

The ideal MHD equations can be expressed in conservative form as:

∂U

∂t
+ ∇ · F = 0 (1)

where U is the vector of the conserved variables and F(U) is the flux:

U =

⎛
⎜⎜⎝

ρ
ρv
ρe
B

⎞
⎟⎟⎠ , F(U) =

⎛
⎜⎜⎝

ρv
ρvvT + p − BBT

ρev + pv − B(v · B)

BvT − vBT

⎞
⎟⎟⎠ (2)

and p = pgas + 1
2 B2 is the total gas pressure, e = u + 1

2 v2 + 1
2ρ B2 is the total energy per unit mass, and u is the thermal 

energy per unit mass. The system is closed with the equation of state of the fluid given by the ideal gas law p = (γ − 1)ρu.
We will denote the discretized time levels by superscripts and spatial discretization by subscripts. In 2D, the cell centers 

are indexed by integer subscripts i, j. Face-averaged values are indexed by half-integers, e.g., i, j + 1/2.
The base scheme we use for the MHD equations is a second-order finite-volume Godunov’s method in the form of the 

MUSCL-Hancock scheme [32,33]. The base scheme advances the solution Un at time level n to the auxiliary solution at time 
level n + 1, denoted by U∗ . This auxiliary solution is used in some cases to obtain the final solution Un+1. Our base scheme 
uses the robust and accurate 5-wave HLLD approximate Riemann solver [34] and the minmod total variation diminishing 
slope limiter to handle discontinuous solutions.
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