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We overview a series of recent works addressing numerical simulations of partial 
differential equations in the presence of some elements of randomness. The specific 
equations manipulated are linear elliptic, and arise in the context of multiscale problems, 
but the purpose is more general. On a set of prototypical situations, we investigate 
two critical issues present in many settings: variance reduction techniques to obtain 
sufficiently accurate results at a limited computational cost when solving PDEs with 
random coefficients, and finite element techniques that are sufficiently flexible to carry 
over to geometries with random fluctuations. Some elements of theoretical analysis and 
numerical analysis are briefly mentioned. Numerical experiments, although simple, provide 
convincing evidence of the efficiency of the approaches.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

We consider in this review article a series of works [8,9,19,33–35,37,41,42,45], completed in collaboration with some 
colleagues of ours, that all share the following common denominator. The task to perform is, possibly repeatedly, to approx-
imate numerically the solution to a partial differential equation that has some random character. In most of our works, the 
equation has the simplest possible form: it is scalar-valued, elliptic, linear, non-degenerate, in divergence form. Typically, 
and with self-explanatory notations, it reads as

−div (a ∇u) = f (1)

on a domain D, and for a certain right hand side f . The random character of the problem can be encoded in the coeffi-
cient a, and/or in the right-hand side f , and/or in the domain D itself.

Needless to say, there exist a number of successful approaches to explicitly treat randomness in such partial differential 
equations. Recent years have witnessed an explosion of the number of methods invented in this extremely lively topic, 
in particular motivated by the field of uncertainty quantification. Stochastic finite elements, spectral methods, sparse ten-
sor products methods, reduced basis techniques, quantization, all methods based one way or another on Karhunen–Loeve, 
Polynomial Chaos, or other types of similar – or not – economical decompositions of the random functions present in the 
equation, both as parameters and unknown functions, have been increasingly studied and considerably improved lately. 
Some accessible general references in the field are the textbooks [25,40]. Review articles on each of the many categories of 
approaches, such as [49], are also available. The rationale behind all these methods is the reduction of the dimension of the 
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problem, considered as a problem in a high-dimensional space consisting of the ambient physical space where the original 
problem is posed augmented by the space of approximation for the random dependency. A simplification of the random 
dependency follows, and the problem becomes amenable to efficient computational techniques. We ourselves have used, 
in [15], and reviewed, in [14], some of these methods (specifically, reduced basis type methods) in the context of equations 
with random parameters.

In the present review article, we would like to concentrate on a somewhat alternate strategy: not attempt to simplify the 
dependency upon randomness, but embrace the difficulty arising from it. Of course, this may only be achieved in some specific 
situations, sufficiently general to be of broad interest, but certainly not covering the immense spectrum of applications in 
the engineering and life sciences, and perhaps not with the same generic character as the above mentioned general purpose 
methods. To some extent, the cases we consider must be slightly simpler than, and not as general as, the cases targeted by 
the above methods. Our ambition and our achievements are more modest. On the other hand, it turns out that the cases 
we consider arise from a context that brings an additional level of complexity: they originate from multiscale modeling. 
In that respect, the mix between the presence of randomness, the multiscale feature, and the wish to compute accurately 
and efficiently lead to an essentially unsolved difficulty (despite the many efforts of outstanding contributors). In multiscale 
computational science, a number of techniques exist, and are improved constantly. But, most of the times, and despite some 
overly optimistic claims, they do not marry so well with randomness when it comes to practical computations. Conversely, 
the extremely efficient toolbox available for random problems has essentially no intersection with multiscale science. Well 
beyond the somewhat limited purpose of this review article, our intention is thus to attract the attention of the community 
to the state of the art: efficiently computing when randomness and many scales are simultaneously present is still an essentially 
open, considerably challenging, issue.

1.1. The two situations considered: similarities and differences

We will consider below two prototypical situations. As we mentioned, we encountered both situations in our research 
efforts devoted to multiscale science, and more precisely in our endeavor to study and improve computational approaches in 
materials science: (i) the approximation of the homogenized tensor in the context of stochastic numerical homogenization, 
and (ii) the multiscale finite element computation of the solution to an (harmless) equation posed on a randomly perforated 
domain.

In both situations, randomness originates from geometry. But, in either situation, geometry is encoded differently in the 
equation. In (i), it is encoded in the heterogeneities of the coefficient. In contrast, in (ii) it is encoded in the computational 
domain itself. The similarity of the two problematics is evident. By penalization, the second problem may even be viewed 
as a particular case of the first problem. However, the techniques we employ are different in nature, and have a different 
purpose.

The former problem (approximation of the homogenized tensor) consists in the repeated resolution of an elliptic equation 
(the celebrated “corrector equation”) on an as large as possible bounded domain, truncation of the whole space Rd , typically 
for d = 2, or d = 3, in practice. The equation is of the above type (1) and will be made explicit below, see (9). The purpose 
of that repeated solution procedure is to compute an expectation (thus, in practice an empirical mean) from the solutions 
obtained for various realizations of the local environment (mathematically encoded in the coefficient a of (1)). The reader 
may think of different microstructures of the material, different inclusions in the medium, etc. The task of computing an 
average, that is a single, deterministic output, sounds simple. In particular, the very process of averaging, performed here 
in the context of a stationary ergodic problem (see the details below), is essentially of the same nature as the law of large 
numbers. This suggests that the random character of the problem progressively vanishes when the number of realizations 
considered increases. However, the practical Monte Carlo approach (generate random environments and average out an 
outcome based on the computed solutions) is plagued by variance issues. The rate of convergence of the approximation, 
in terms of the size of the truncated computational domain asymptotically covering the whole ambient space, is universal. 
It is dictated by the central limit theorem. The prefactor appearing in the error estimate is related to the variance of the 
problem. Efficient computational approaches consist in designing tools to reduce that variance, thus the statistical error 
in the approximation. That error largely dominates the bias (the deterministic part of the error), and thus is the critical 
quantity that governs the overall quality of the numerical approach. Our series of works addresses various techniques to 
reduce the variance: antithetic variables, control variate, selection approach, the latter being somewhat in the spirit of 
stratified sampling. They are imported from several different contexts and are adjusted to the specific context of numerical 
homogenization.

The latter problem (multiscale finite element computations on randomly perforated domains) differs from the former 
problem in several respects. As mentioned above, the randomness of the geometry is now encoded not in the coefficients of 
the equations (which are constant, for simplicity), but in the domain where the equation is posed. We deal with perforations 
of that domain that are randomly located. Note however that, as briefly mentioned above, the perforations of the domain can 
be, in the numerical discretization, treated by penalization, in which case the two situations we consider become closer to 
one another. Another, more substantial, difference is that this second example is a representative case of modern multiscale 
techniques. In contrast with classical techniques which (i) aim at computing an equivalent “homogenized” medium, and 
(ii) achieve this in the asymptotic limit of vanishing length scales of the oscillations originally present (this is the case 
of our former situation), modern techniques attack the multiscale problem (i) directly and (ii) at the actual length scales. 
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