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In this work, a concept for coupling fluid–structure interaction with brittle fracture in 
elasticity is proposed. The fluid–structure interaction problem is modeled in terms of 
the arbitrary Lagrangian–Eulerian technique and couples the isothermal, incompressible 
Navier–Stokes equations with nonlinear elastodynamics using the Saint-Venant Kirchhoff 
solid model. The brittle fracture model is based on a phase-field approach for cracks 
in elasticity and pressurized elastic solids. In order to derive a common framework, the 
phase-field approach is re-formulated in Lagrangian coordinates to combine it with fluid–
structure interaction. A crack irreversibility condition, that is mathematically characterized 
as an inequality constraint in time, is enforced with the help of an augmented Lagrangian 
iteration. The resulting problem is highly nonlinear and solved with a modified Newton 
method (e.g., error-oriented) that specifically allows for a temporary increase of the 
residuals. The proposed framework is substantiated with several numerical tests. In these 
examples, computational stability in space and time is shown for several goal functionals, 
which demonstrates reliability of numerical modeling and algorithmic techniques. But also 
current limitations such as the necessity of using solid damping are addressed.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Both fluid–structure interaction (FSI) and fracture propagation are current but challenging topics with numerous appli-
cations in applied mathematics and engineering. For FSI literature we exemplary refer to the books [17,33,36,16,8] and 
for fracture mechanics we refer to [42,67,71,82,4,12,70]; and references cited therein are also emphasized. The goal of this 
work is to bring both frameworks together. This is of great interest since often FSI settings should also be able to account 
for fracture (or damage) of the solid part. On the other hand, single or multiple fractures or fracture networks can be found, 
for instance, in geomechanics, geophysics and porous media, which are possibly filled with fluids or coupled to surrounding 
flow. Thus, a framework that contains elastodynamics (which do also allow to account for large solid deformations), fluid 
flow, and a model for fracture representation and propagation is of current interest.

In classical FSI, the isothermal, incompressible Navier–Stokes equations are coupled with elastodynamics. The consti-
tutive law in the solid is based on the geometrically nonlinear Saint-Venant Kirchhoff (STVK) model, see e.g., [20]. Here, 
three unknowns are sought: velocities, pressure and displacements. The FSI coupling technique is based on an interface-
tracking method; namely the nowadays standard arbitrary Lagrangian–Eulerian (ALE) technique [25,47,50,63,32]. Here, the 
flow equations are re-written such that their coordinate system matches the Lagrangian framework of the solid. The re-
sulting formulation using variational–monolithic coupling in the reference configuration is outlined in [49,68,74]. The key 

E-mail address: thomas.wick@ricam.oeaw.ac.at.

http://dx.doi.org/10.1016/j.jcp.2016.09.024
0021-9991/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2016.09.024
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:thomas.wick@ricam.oeaw.ac.at
http://dx.doi.org/10.1016/j.jcp.2016.09.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2016.09.024&domain=pdf


68 T. Wick / Journal of Computational Physics 327 (2016) 67–96

feature of the ALE approach is that the interface aligns with mesh edges and therefore interface-terms such as traction 
forces can be computed with high accuracy. In addition, it allows for many settings up to large solid deformations as long 
as the ALE mapping is a C1-diffeomorphism.

On the other hand, brittle fracture propagation using variational techniques has attracted attention in recent years since 
the pioneering work in [35,11]. Since in FSI the constitutive stress tensor is generally nonlinear, we also refer to [21] who 
formulated quasistatic fracture growth using a variational setting employing nonlinear elasticity. The numerical approach 
[11] is based on Ambrosio–Tortorelli elliptic functionals [2,3]. Here, discontinuities in the displacement field across the 
lower-dimensional crack surface are approximated by an auxiliary function ϕ . This function can be viewed as an indicator 
function, which introduces a diffusive transition zone between the broken and the unbroken material. This zone has a half 
bandwidth ε, which is a model regularization parameter. From an application viewpoint, two situations are of interest for 
given fracture(s): first, observing the variation of the fracture width (crack opening displacement) and second, change of 
the fracture length. The latter situation is by far more complicated. However, both configurations are of importance and 
variational fracture techniques can be used for both of them.

Fracture evolutions satisfy a crack irreversibility constraint such that the resulting system can be characterized as a 
variational inequality. Our motivation for employing such a variational approach is that fracture nucleation, propagation, 
kinking, and curvilinear paths are automatically included in the model. In addition, explicit remeshing or reconstruction of 
the crack path is not necessary. The underlying equations are based on continuum mechanics principles that can be treated 
with (adaptive) Galerkin finite elements. On the contrary the underlying energy functional is not simultaneously convex 
in both solution variables [35] and a crucial difficulty. Another challenge is the resolution of ε in relation to the spatial 
discretization parameter h < ε, which requires local mesh adaptivity around the crack zone [43] when very small ε are of 
interest as well as a posteriori error estimation [5] and goal functional evaluations [79]; otherwise the computational cost 
becomes prohibitive.

An important modification of [35] towards a thermodynamically-consistent phase-field fracture (PFF) model has been 
accomplished in [59,56]. This approach has been extended to pressurized fractures in [61,62]. Here, the crack irreversibility 
constraint has been imposed through penalization. In phase-field fracture, two unknowns are sought: displacements and 
a phase-field function that determines the crack location. Recent advances and numerical studies towards pressurized and 
fluid-filled fracture and other multiphysics applications including thermo–elastic–plastic solids and coupling with a reservoir 
simulator have been considered in [62,60,73,58,55,80]. However, to the best of our knowledge coupling with classical FSI 
and the need to work with different coordinate systems has not yet been considered, which constitutes a major novelty of 
the present work.

As previously described, the solid part of FSI is based on elastodynamics, and therefore we accentuate the work of 
[9,52,13,51] who extended variational quasi-static brittle fracture to dynamic brittle fracture taking into account the solid 
acceleration term. Moreover, the authors of [52] introduced an elastic dissipation term, which is for wave propagation 
problems known as strong solid damping. This term improves the regularity of the solid velocity, see e.g., [37]. In the 
analysis for dynamic fracture this term was crucial, see [52, Remark 2.2], the corresponding theorems, and their conclusions. 
It turns out that in our numerical simulations we also need such a term; specifically for fractures that increase not only 
their width but also their length.

The goal in this paper is to couple ALE fluid–structure interaction with pressurized phase-field fracture. In order to 
achieve this task, we combine four models:

1. Nonlinear ALE fluid–structure interaction;
2. Crack representation and propagation in elastodynamics with phase-field;
3. Enforcing crack irreversibility via an augmented Lagrangian technique;
4. Pressurized phase-field fracture modeling in Lagrangian coordinates in a fixed reference domain.

In the first model, we deal with three types of nonlinearities: fluid convection, a geometrically nonlinear Green–Lagrange 
strain tensor, and finally the nonlinear ALE mapping. With regard to the second approach, we emphasize that we consider 
fixed fractures that only vary in their width as well as the more challenging configuration of propagating fractures. The 
third model does not need further comments and follows the ideas originally proposed in [34,40]. The fourth approach has 
been worked out for quasi-static fractures in porous media [61,62]. In the present work, this idea is extended to dynamic 
fractures in solid mechanics. The phase-field fracture equation is formulated in Lagrangian coordinates in order to match 
them with the ALE prescription of fluid–structure interaction.

The resulting formulation is consequently prescribed in a fixed, but arbitrary, reference domain and all coupling con-
ditions are satisfied in a variational exact fashion on the continuous level. This formulation is now fully-coupled and can 
be written in terms of a Galerkin form. Then, numerical discretization is straightforward as the Rothe method (first time, 
then space) can be applied on the resulting semilinear form. These steps will be explained in great detail. The discretized, 
nonlinear coupled problem is solved with Newton’s method with a modification that allows for an increase of the residual. 
This can be achieved either with an error-oriented line-search globalization [24] or simply using a classical residual-based 
approach that sometimes violates the convergence criterion.
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