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This work presents a solution methodology for solving the grey radiative transfer equations 
that is both spatially and temporally more accurate than the canonical radiative transfer 
solution technique of linear discontinuous finite element discretization in space with 
implicit Euler integration in time. We solve the grey radiative transfer equations by fully 
converging the nonlinear temperature dependence of the material specific heat, material 
opacities, and Planck function. The grey radiative transfer equations are discretized in space 
using arbitrary-order self-lumping discontinuous finite elements and integrated in time 
with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative 
convergence of the radiation equation is accelerated using a modified interior penalty 
diffusion operator to precondition the full discrete ordinates transport operator.

Published by Elsevier Inc.

1. Introduction

The goal of this work is to accurately solve the time-dependent thermal radiative transfer (TRT) equations. The TRT 
equations are a nonlinear system of equations that describe the conservation and transfer of energy between a photon 
(radiation) field and a stationary material. Solution of the TRT equations is an important component in several areas of 
physics including, but not limited to, astrophysics, inertial confinement fusion, and high energy density laboratory physics 
experiments.

It has previously been shown for linear neutron transport spatially discretized with discontinuous Galerkin finite ele-
ments (DFEM) that an increase of the trial space polynomial degree results in increased accuracy per unknown as compared 
to lower degree polynomial trial space DFEM solutions [1]. Additionally, as computing hardware advances, the number of 
floating point operations (FLOPs) available per memory operation continues to increase [2]. Computer architecture is not 
yet to the point where the higher number of FLOPs per unknown associated with higher order methods is completely 
masked by memory latency and relative narrowing of memory bandwidth [3–5]. However, we are quickly approaching an 
era in computing where increased accuracy through increased FLOPs per unknown will no longer result in a correspond-
ing increase in time to solution; the main computing performance bottleneck will likely be memory latency or memory 
bandwidth.

In radiative transfer, material absorption opacities are strong functions of temperature; the common assumption being 
that opacities, σ , vary proportionally to 1

T 3 [6–9]. Since temperature varies within each spatial zone, accurate TRT spatial 

* Corresponding author.
E-mail addresses: maginot1@llnl.gov (P.G. Maginot), jean.ragusa@tamu.edu (J.C. Ragusa), morel@tamu.edu (J.E. Morel).

http://dx.doi.org/10.1016/j.jcp.2016.09.055
0021-9991/Published by Elsevier Inc.

http://dx.doi.org/10.1016/j.jcp.2016.09.055
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:maginot1@llnl.gov
mailto:jean.ragusa@tamu.edu
mailto:morel@tamu.edu
http://dx.doi.org/10.1016/j.jcp.2016.09.055
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2016.09.055&domain=pdf


720 P.G. Maginot et al. / Journal of Computational Physics 327 (2016) 719–746

discretization schemes must explicitly account for this within-zone opacity variation. As shown in [10] for neutron transport, 
the common zone-wise constant cross section approximation limits DFEM order of convergence to at most second order in 
space, regardless of trial space degree.

We use an overall solution strategy similar to that of Morel et al. [11] to solve the grey thermal radiative transfer equa-
tions: discrete ordinates to treat the angular dependence of the radiation equations, quasi-Newton iteration on material 
temperature, and approximation of the Planck function spatial dependence as a polynomial contained within the DFEM trial 
space. However, our work varies from that of [11] in several ways. First, in this work we use arbitrary-order self-lumping 
DFEM [10] rather than limiting our derivation to lumped linear DFEM. Likewise, we derive our equations using arbitrary-
order, arbitrary stage count diagonally implicit Runge–Kutta (SDIRK) time integration [12], rather than considering only first 
order, single stage, implicit Euler time integration. Additionally, we fully converge the nonlinear temperature dependence 
of the grey TRT at every time integration stage, rather than performing a single quasi-Newton iteration. Each quasi-Newton 
iteration fully accounts for the nonlinear temperature dependence of the Planck function. Material property nonlinear de-
pendencies are resolved by updating all temperature dependent material properties with every new temperature iterate. 
New temperature iterates come from the linearization of the Planck function temperature dependence. When the Planck 
linearization is fully converged, the nonlinear dependencies of the material properties are also converged. Finally, we do 
not assume that opacity and heat capacity are zone-wise constant; we explicitly account for the within zone variation of 
material properties via our self-lumping DFEM [10].

The remainder of this paper is divided as follows. In Section 2 we derive the discrete ordinate, grey thermal radiative 
transfer equations spatially discretized with arbitrary order DFEM and integrated in time with an arbitrary stage count SDIRK 
method. Additionally in Section 2, we apply the modified interior penalty diffusion synthetic operator [13,14] to accelerate 
the iterative convergence of our linearized arbitrary order DFEM radiation equation. An overview of our solution algorithm 
is given in Section 3. In Section 4 we present a series computational problems and results that: verify our implementation, 
demonstrate the asymptotic orders of convergence of our new methodology, and show that the proposed methods yield tan-
gible benefits for physically meaning full simulations. In Section 4 we also briefly discuss the computational characteristics 
of our algorithm. Finally, we discuss our results and offer concluding remarks in Section 5.

2. Discretization of the thermal radiative transfer equations

We begin with the slab geometry, grey, thermal radiative transfer equations:
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where x is position in the slab; t is time; c is the speed of light; I is the frequency integrated intensity, I = I(x, μ, t); 
μ is the directional cosine of the intensity relative to the x axis; T is the material temperature, T = T (x, t); φ is the 
frequency and angle integrated intensity, φ = φ(x, t); σt , σs , and σa are respectively the total, scattering, and absorption 
opacities, with each opacity being a function of space and material temperature; B is the Planck function, B(T ); C v is the 
material heat capacity, C v = Cv (x, T ); Q I is a driving radiation source, Q I = Q I (x, μ, t); and Q T is a driving temperature 
source, Q T = Q T (x, t). Driving sources are considered for generality and the use of the method of manufactured solutions. 
In Eq. (1a), we have assumed only isotropic scattering, and define the angle integrated intensity as:

φ(x) = 2π

1∫
−1

I(x,μ) dμ. (2)

The frequency integrated Planck function, with Planck radiation constant, a, is:

B(T ) = acT 4

4π
. (3)

Introducing the discrete ordinates approximation,

φ ≈ 2π

Ndir∑
d=1

ωd Id , (4)

where μd, ωd are direction and weight pairs of a given angular quadrature set with 
Ndir∑

d
ωd = 2, Id = I(μd), and Q Id =

Q I (μd), Eq. (1a) becomes:

1

c

∂ Id

∂t
+ μd

∂ Id

∂x
+ σt Id = σs

4π
φ + σa B + Q Id . (5)



Download	English	Version:

https://daneshyari.com/en/article/4967977

Download	Persian	Version:

https://daneshyari.com/article/4967977

Daneshyari.com

https://daneshyari.com/en/article/4967977
https://daneshyari.com/article/4967977
https://daneshyari.com/

