
Hyperbox clustering with Ant Colony Optimization (HACO) method and its
application to medical risk profile recognition

G.N. Ramos a,*, Y. Hatakeyama b, F. Dong a, K. Hirota a

a Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama, Japan
b Center of Medical Information Science, Medical School, Kochi University, Nankoku city, Japan

1. Introduction

The Ant Colony Optimization (ACO) meta-heuristic [4,5] uses a
population of agents (ants) guided by an autocatalytic process
directed by a greedy force for discrete combinatorial optimization
problems. Previous studies applied optimization techniques to
clustering problems, for example [11,12,15,18], aim to minimize a
fitness function, usually a distance measure, relating the data to a
cluster centroid.

Minimizing the distance between data points and cluster
centroids is a logical approach, yet it does not necessarily provide
topological information of the data. The mentioned methods have
provided reasonable minimum distance results, though they lack
the information that is, in many cases, essential for extracting
intuitive knowledge from the data. When used in pattern
recognition or classification applications, despite the fact that
the fitness criterion is satisfied, result accuracy (misclassification)
may be an issue.

The Hyperbox clustering with Ant Colony Optimization method
(HACO) is proposed for clustering unlabeled data by placing
hyperboxes in the feature space optimized by the ACO. It applies an
optimization technique combined to a well-known local search
algorithm to the clustering problem, acknowledging the topolo-
gical information of the data, if available.

Hyperboxes are placed in the search space using the ACO meta-
heuristic and then clustered using the Nearest-Neighbor (NN)
method. The number of hyperboxes to perform the search with is
usually smaller than (or, in the worst case, equal to) the number of
samples, which means that the search can be done in less
iterations, making HACO a fast classifier.

HACO is applied to three computer-generated 2D data sets which
have significant topological information for validation as a
classification method, considering speed and accuracy. It is then
applied to a Human Papillomavirus (HPV) data set in order to
identify probable infection profiles that may be used as a basis for
preventive medical check-ups. It is compared to two well-
established clustering methods and the usual ACO approach and
the results show that the HACO method can be more effective than
the others.

A brief description of ACO and definition of hyperboxes are
presented in Section 2; Section 3 proposes and details the HACO
method; clustering experiments and the results are analyzed in
Section 4.

2. Description of ant colony optimization and hyperboxes

2.1. A review on ant colony optimization

The ACO meta-heuristic is population-based and can be readily
applied to discrete combinatorial optimization problems. It makes
an analogy of the way real ant colonies work to optimize
combinatorial problems [4,5]. The basic idea is the synergy of

Applied Soft Computing 9 (2009) 632–640

A R T I C L E I N F O

Article history:

Received 24 August 2006

Received in revised form 31 August 2008

Accepted 11 September 2008

Available online 26 September 2008

Keywords:

Clustering

Ant colony

Hyperbox

Optimization

Pattern recognition

A B S T R A C T

A clustering method, called HACO (Hyperbox clustering with Ant Colony Optimization), is proposed for

classifying unlabeled data using hyperboxes and an ant colony meta-heuristic. It acknowledges the

topological information (inherently associated to classification) of the data while looking in a small

search space, providing results with high precision in a short time. It is validated using artificial 2D data

sets and then applied to a real medical data set, automatically extracting medical risk profiles, a laborious

operation for doctors. Clustering results show an improvement of 36% in accuracy and 7 times faster

processing time when compared to the usual ant colony optimization approach. It can be further

extended to hyperbox shape optimization (fine tune accuracy), automatic parameter setting (improve

usability), and applied to diagnosis decision support systems.

� 2008 Elsevier B.V. All rights reserved.

* Corresponding author.

E-mail addresses: ramos@hrt.dis.titech.ac.jp, ramos.at.titech@gmail.com

(G.N. Ramos).

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsev ier .com/ locate /asoc

1568-4946/$ – see front matter � 2008 Elsevier B.V. All rights reserved.

doi:10.1016/j.asoc.2008.09.004

mailto:ramos@hrt.dis.titech.ac.jp
mailto:ramos.at.titech@gmail.com
http://www.sciencedirect.com/science/journal/15684946
http://dx.doi.org/10.1016/j.asoc.2008.09.004


applying multiple communicating agents to build a solution. Real
ants communicate with each other by depositing pheromone on
the trail between the food source and the nest [3]. The shorter the
trail, the faster the ants will go through it and thus more
pheromone will be deposited. Since ants have a high probability of
following trails with higher pheromone deposition, the process
reinforces itself [4,5].

This is a distinctive feature of ACO: the pheromone matrix
works as dynamic memory, indicating how desirable a data object
is to the solution [4], and thus mediates how one ant’s behavior is
determined by the previous ants [3–5]. The values are updated
according to the quality of the solutions, so the process
‘‘remembers’’ good solutions and ‘‘forgets’’ bad ones. Similar
agent-based applications have been used for data clustering, but
such algorithms usually follow the Ant Cemetery approach [12],
which provides no global control over the agents. This approach
has been combined with Fuzzy C-Means [11] and K-Means [15]
algorithms in order to improve the quality of results.

The main characteristics of ACO approach are positive feedback
(improves speed of finding good solutions), distributed computa-
tion (avoids early convergence) and greedy heuristic (finds
reasonable a solution early in the process) [4,5,7]. Due to such
characteristics, however, it may be outperformed by specialized
algorithms [4,5].

The ACO can be simplified in three basic procedures per
iteration [4,5]: build solutions, local optimization (an optional
step) and pheromone update. When applied to finding suitable
data set partitions for clustering [18], i.e., dividing the data set into
distinct classes represented by the clusters, ACO aims to minimize
distances between the samples and the centroids.

Due to its inherent characteristics (flexibility and fast con-
vergence), the ACO algorithm is a good approach for partition
clustering. In this case, since the objective is to minimize the
distance between data objects and the cluster centroids, it
attempts to cluster the closest data objects. This is done by
assigning clusters to each data object, and then calculating the
distances. It may not produce the best results; however, depending
on how the data is distributed on the feature space. This approach
does not consider the topology of the feature space, which is
inherently associated to classification processes [6,17]. For
example, consider the data set shown in Fig. 1.

Intuitively, it is clear that the classes are distributed as one long
curved-shaped cluster (the points with positive vertical coordi-
nates) and one oval cluster (points with negative vertical
coordinates), as in Fig. 1a. The ACO algorithm, however, defines
a partition of the data in such way that it is divided into one
elongated cluster and one larger cluster, as in Fig. 1b. The fitness of
the solution in Fig. 1b is indeed better than the fitness of Fig. 1a;
nevertheless it is clear that the solution lacks the topological
information.

2.2. Describing hyperboxes

A hyperbox defines a region in an n-dimensional space
[17,19,20] and is fully described by two vectors, usually its two
extreme points: al which is the lower bound and bl, the upper
bound. Assuming an n-dimensional space of real numbers (Rn)
and a hyperbox Hl = (al, bl), where al � bl, a point y is said to be in
Hl if

H ¼ fH1;H2; . . . ;Hl; . . . ;HCg;
Hl�R

n;

y ¼ fy1; y2; . . . ; y j; . . . ; yng;
y2Hl) al j � y j � bl j; al; bl 2Rn;

(1)

where C is the total number of hyperboxes and yj is the jth attribute
of y.

Using this definition it is necessary to have two points for a
hyperbox; however, the objective of HACO is to group data objects
that are near each other, which accounts to some problems on
choosing this points. It is, therefore, more convenient to use a
slightly different approach, which maintains the useful character-
istics of a hyperbox. It can be defined by one point (in HACO, one
data object xi) and an n-dimensional vector D which defines the
edge lengths for each attribute, as in Hl = (xi, D). Therefore, each
hyperbox will define a region in the space around such data point,
as follows:

X ¼ fx1; x2; . . . ; xi; . . . ; xNg�R
n;

D ¼ fD1;D2; . . . ;D j; . . . ;Dng;
8 y2Rn;

y2Hl) xi j �
D j

2
� y j � xi j þ

D j

2
;

(2)

where X is the set of data points with cardinality N, and Dk is the
edge length for the jth hyperbox dimension.

Hyperbox classifiers can give straightforward interpretation
for classification rules [17], such as ‘‘if y 2 [al, bl] then y belongs
to the class defined by H00l , without calculating any distances.
Also, if associated with a fuzzy membership function, they can
be used as inputs for fuzzy min–max neural networks to be
applied in classification [19] or clustering [20]. In these
applications, data is assumed to be labeled and part of it is
used for training.

It is possible to automatically determine shape patterns
by grouping hyperboxes, and then define a class according to
the specific characteristics. Since overlapping may occur
but data objects are not allowed to belong to different classes
(crisp clustering [10]), the proposed method requires that
overlapping hyperboxes represent the same class. In other
words, hyperboxes representing different classes must be
disjoint.

Fig. 1. Data partition examples: (a) intuitive partition; (b) ACO partition.

G.N. Ramos et al. / Applied Soft Computing 9 (2009) 632–640 633



Download	English	Version:

https://daneshyari.com/en/article/496798

Download	Persian	Version:

https://daneshyari.com/article/496798

Daneshyari.com

https://daneshyari.com/en/article/496798
https://daneshyari.com/article/496798
https://daneshyari.com/

