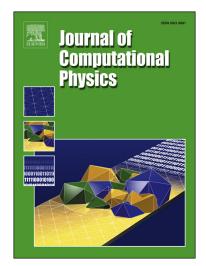
Accepted Manuscript

Scalable algorithms for three-field mixed finite element coupled poromechanics

Nicola Castelletto, Joshua A. White, Massimiliano Ferronato


PII: S0021-9991(16)30484-3

DOI: http://dx.doi.org/10.1016/j.jcp.2016.09.063

Reference: YJCPH 6874

To appear in: Journal of Computational Physics

Received date: 12 April 2016 Revised date: 27 September 2016 Accepted date: 28 September 2016

Please cite this article in press as: N. Castelletto et al., Scalable algorithms for three-field mixed finite element coupled poromechanics, *J. Comput. Phys.* (2016), http://dx.doi.org/10.1016/j.jcp.2016.09.063

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Scalable Algorithms for Three-Field Mixed Finite Element Coupled Poromechanics

Nicola Castelletto^{a,*}, Joshua A. White^b, Massimiliano Ferronato^c

^aEnergy Resources Engineering, Stanford University, United States
^bAtmospheric, Earth and Energy Division, Lawrence Livermore National Laboratory, United States
^cDepartment of Civil, Environmental and Architectural Engineering, University of Padova, Italy

Abstract

We introduce a class of block preconditioners for accelerating the iterative solution of coupled poromechanics equations based on a three-field formulation. The use of a displacement/velocity/pressure mixed finite-element method combined with a first order backward difference formula for the approximation of time derivatives produces a sequence of linear systems with a 3×3 unsymmetric and indefinite block matrix. The preconditioners are obtained by approximating the two-level Schur complement with the aid of physically-based arguments that can be also generalized in a purely algebraic approach. A theoretical and experimental analysis is presented that provides evidence of the robustness, efficiency and scalability of the proposed algorithm. The performance is also assessed for a real-world challenging consolidation experiment of a shallow formation.

Keywords: poromechanics, preconditioners, iterative methods, mixed formulation, algebraic multigrid

1. Introduction

Coupling between fluid flow and mechanical deformation is a key factor in many subsurface engineering applications, such as hydrocarbon recovery [1, 2], subsurface hydrology [3–5], geothermal energy extraction [6, 7], and geologic carbon storage [8–10]. A similar behavior often governs porous media beyond geoscience systems, e.g. biomechanical modeling of bone or soft tissue deformations [11, 12]. The fundamental mathematical framework governing coupled fluid flow and deformation—generally referred to as *poroelasticity* [13]—was established by Biot [14]. Today, the poroelasticity theory and more sophisticated extensions, e.g. [15], have a well-established theoretical foundation. However, the accurate and efficient numerical simulation of tightly coupled poromechanical systems still poses severe computational challenges that require advanced discretization techniques and linear/non-linear solvers to obtain reliable modeling predictions. Here, we focus on efficient and scalable numerical solvers for coupled single-phase flow and mechanical processes in geological formations based on a three-field mixed finite-element (FE) discretization of the governing equations.

From a discretization point of view, a mixed FE scheme imposes an inf-sup (or LBB) compatibility constraint on the selection of the discrete spaces for interpolating the primary variables fields [16]. Violation of this constraint may result in numerical solutions that exhibit different forms of instabilities. For example, a classical two-field displacement-pressure formulation based on the continuous Galerkin FE method—the most popular technique used in consolidation modeling [17]—typically generates nonphysical pressure oscillations, when incompressible or impermeable conditions are approached, if an equal-order interpolation is used for both discrete variables. Stable discretizations may be achieved by either selecting discrete spaces that are intrinsically LBB-stable, or devising suitable stabilization techniques. The classical Taylor-Hood elements [18] belong to the first class. Examples of stabilized formulations, which allow for preserving the advantages of using equal-order interpolation, are proposed in [19, 20].

^{*}Corresponding author

Email addresses: ncastell@stanford.edu (Nicola Castelletto), jawhite@llnl.gov (Joshua A. White), massimiliano.ferronato@unipd.it (Massimiliano Ferronato)

Download English Version:

https://daneshyari.com/en/article/4967986

Download Persian Version:

https://daneshyari.com/article/4967986

<u>Daneshyari.com</u>