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Spectral methods are an efficient way to solve partial differential equations on domains 
possessing certain symmetries. The utility of a method depends strongly on the choice of 
spectral basis. In this paper we describe a set of bases built out of Jacobi polynomials, and 
associated operators for solving scalar, vector, and tensor partial differential equations in 
polar coordinates on a unit disk. By construction, the bases satisfy regularity conditions 
at r = 0 for any tensorial field. The coordinate singularity in a disk is a prototypical case 
for many coordinate singularities. The work presented here extends to other geometries. 
The operators represent covariant derivatives, multiplication by azimuthally symmetric 
functions, and the tensorial relationship between fields. These arise naturally from relations 
between classical orthogonal polynomials, and form a Heisenberg algebra. Other past work 
uses more specific polynomial bases for solving equations in polar coordinates. The main 
innovation in this paper is to use a larger set of possible bases to achieve maximum 
bandedness of linear operations. We provide a series of applications of the methods, 
illustrating their ease-of-use and accuracy.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Cylindrical polar coordinates find applications in countless areas of science and engineering. Important applications in-
clude pipe flow, laboratory studies of thermal convection, astrophysical accretion disks, electromagnetic waveguides, elastic 
deformation of rods, astronomical instrumentation, and plasma tokamaks. Many applications require the accurate and effi-
cient solution of systems of partial differential equations (PDEs). Pseudospectral methods of different types prove useful for 
this task in many different geometries. In polar coordinates, the periodic nature of the azimuth angle allows the effective 
use of Fourier series, where

f (r, θ) =
∞∑

m=−∞
fm(r)eimθ , fm(r) = 1

2π

2π∫
0

f (r, θ)e−imθ dθ. (1)
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After the Fourier transform, differentiation in θ becomes multiplication by im. While Fourier analysis easily dispatches the 
azimuthal coordinate for functions on a disk, the radial coordinate presents difficulty for the following reason. For functions 
analytic everywhere on the disk, including the origin,

fm(r) ∼ rm F (r2) as r → 0, (2)

where F (r2) is an even function of r that is analytic at the origin.
The coordinate singularity at the disk centre requires an m-th order zero for infinite differentiability [26,3]. Enforcing 

this condition in numerical calculations presents challenges; especially for m � 1. Many authors address this challenge 
with equally as many different techniques. Even considering regularity at the origin, the disk geometry allows a large 
number of possible orthogonal-polynomial bases [8,15]. Zernike (1934) [36] produced the first practical set of polynomials 
for expanding functions on the unit disk. This basis proves particularly useful in optical applications. Bhatia and Wolf (1954) 
[1] pointed out that this set is the only out of a possible infinity that contains “simple properties strictly analogous to that of 
Legendre polynomials.”

Boyd and Yu (2011) [3] provide a comprehensive review of the history and contemporary methods used to solve 
Poisson’s equation in a disk. In particular, the paper reviews bases using Zernike-type polynomials, as well as the more 
common Chebyshev polynomials. The results for Chebyshev series range from acceptable to untenable. The diversity of 
Chebyshev methods results from different ways to represent the pole condition and/or the reflectional symmetry near the 
origin. A minimalist approach happens to produce the best option. This option expands even/odd-m modes in terms of an 
even/odd-degree Chebyshev series. This approach double wraps the disk using a Chebyshev series over −1 ≤ r ≤ 1 [34,10]. 
Compared to other Chebyshev options, simple even–odd matching works well with no other special intervention [17]. Even–
odd matching and/or double-covering can satisfy equation (2) with good-to-moderate accuracy. These schemes however do 
not enforce the analytic condition explicitly. This implies that singularities can still arise in higher-order derivatives; also see 
[17]. Even weak singularities can produce instabilities at the origin when performing time-evolution simulations. As a third 
option, the Roberts basis combines an even Chebyshev series with an explicit rm prefactor. In spite of initial attractiveness 
(e.g., possessing a fast transform), this basis suffers from extreme numerical ill conditioning, and is not recommended [3].

Regarding the Zernike-type bases, Boyd and Yu point out that they are “More accurate for large m.” They also discuss the 
less-fortunate fact that Zernike bases do not admit a fast transform in the radial direction. But that for various reasons 
“the advantages of ‘FFT-ability’ is not huge.” They conclude that “It is difficult to definitely endorse one particular method for the 
disk because of the vast diversity of solutions to interesting engineering and science problems.” Furthermore, Slevinsky (2016) has 
recently made significant progress toward designing an effective fast transform from values at Chebyshev points to Jacobi 
coefficients that would work with the Zernike basis [30]. For these reasons and more, we believe that polynomial bases that 
satisfy equation (2) are very useful in many applications and are worthy of more detailed understanding.

In addition to scalar-valued functions, many situations also require vector and tensor fields. Vectors introduce additional 
complications near the coordinate singularity. Much less work exists addressing these issues. In particular, the m-th Fourier 
components of a vector field behave such that

vm(r) ∼ rm−1 V (r2) r → 0, (3)

where, like F (r2) in equation (2), V (r2) is an even function of r that is analytic at the origin. We can (for example) see the 
necessity of equation (3) by differentiating equation (2) with respect to r.

Sakai and Redekopp (2009) [31] circumvented this issue by working with rescaled variables of the form rvm(r); which 
behaves like equation (2). Li, Livermore and Jackson (2010) [16] use a poloidal–toroidal formulation to create a genuine 
(higher-order) scalar system out of a specific vector system. Using a technique equivalent to the r rescaling, Matsushima 
and Marcus (1995) [18] show (and Boyd and Yu [3] reiterate) that Zernike polynomials produce pentadiagonal matrices for 
the solution of the radial portion of Poisson’s equation. Lastly, Townsend, Wilber and Wright (2016) develop an efficient 
low-rank approximation of scalar and vector functions on the disk that preserve regularity [33]. These methods work well 
for data analysis. Their application to time evolving systems remains less clear.

We show in this paper the non-necessity of radial rescaling and/or equation reformulation. Previous works found recur-
sion relationships for elementary operators r2 and rd/dr. Our calculus finds simpler factorisations of these operations in 
terms of r, d/dr and m/r. These are all of the elementary operators needed for full tensor calculus. This not only makes 
calculations easier to formulate, but also more numerically efficient and stable. In the process, we also show how to con-
struct solutions to Poisson’s equation on the disk using only tridiagonal (as opposed to pentadiagonal) matrices; see the 
discussion in Example 1 in §6 for more details. The foundation of the new results rests on exploiting a more general class 
of orthogonal polynomials. That is, we choose different bases to represent domain and range spaces of operators, so that 
coupling becomes banded. This mirrors using ultra-spherical polynomials for solving equations on the unit interval [5,7,
23]. Moreover, we incorporate azimuthally symmetric variable coefficients without destroying bandedness. This occurs via 
approximating non-constant coefficients with finite-degree polynomials similar to [23].

A central theme of this paper demonstrates that increasing the collection of available bases can increase (i) the simplicity 
of a calculation’s numerical implementation; (ii) the speed to compute a solution; and (iii) the accuracy of the result. 
We outline our following results: §2 derives properties for useful bases for polar coordinates (using properties of Jacobi 
polynomials). §3 shows how these bases respond to the covariant derivative operator in polar coordinates. §4 discusses 
multiplication by radial functions. §5 shows how the different bases relate to each other, and how the different operators 
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