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In this paper, we propose some efficient and robust numerical methods to compute the 
ground states and dynamics of Fractional Schrödinger Equation (FSE) with a rotation 
term and nonlocal nonlinear interactions. In particular, a newly developed Gaussian-sum 
(GauSum) solver is used for the nonlocal interaction evaluation [31]. To compute the 
ground states, we integrate the preconditioned Krylov subspace pseudo-spectral method 
[4] and the GauSum solver. For the dynamics simulation, using the rotating Lagrangian 
coordinates transform [14], we first reformulate the FSE into a new equation without 
rotation. Then, a time-splitting pseudo-spectral scheme incorporated with the GauSum 
solver is proposed to simulate the new FSE. In parallel to the numerical schemes, we also 
prove some existence and nonexistence results for the ground states. Dynamical laws of 
some standard quantities, including the mass, energy, angular momentum and the center 
of mass, are stated. The ground states properties with respect to the fractional order and/or 
rotating frequencies, dynamics involving decoherence and turbulence together with some 
interesting phenomena are reported.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Recently, a great deal of attention has been directed towards the derivation of a powerful generalization of PDEs through 
the inclusion of fractional order operators [26,35,42,51]. The aim of this paper is to contribute to this new hot area for frac-
tional quantum physics, with possible applications, e.g. in Bose–Einstein condensation (BEC). During the last decades, the 
classical Schrödinger Equation (SE) has been widely investigated and applied to many areas in physics (optics, electromag-
netic, superfluidity, etc.). It is known as the fundamental equation of classical quantum mechanics which can be interpreted 
by the Feynman path integral approach over Brownian-like quantum paths [32]. Lately, Laskin extended the Feynman path 
integral approach over the more general Lévy-like quantum paths and derived a Fractional Schrödinger Equation (FSE), 
which modifies the SE by involving the fractional Laplacian (−�)s [46–48]. The FSE was then applied to represent the Bohr 
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atom, fractional oscillator [48], and it is a new fractional approach to study the quantum chromodynamics (QCD) problem of 
quarkonium [46]. The FSE also arises in the continuum limit of the discrete SE with long-range dispersive interaction [43], 
in the mathematical description of boson stars [28] and in some models of water wave dynamics [39]. It has also been 
proposed to study BEC of which the particles obey a non-Gaussian distribution law [30,56,57], where FSE was named as 
Fractional Gross–Pitaevskii Equation (FGPE) and BEC as Fractional BEC (FBEC). Compared with the SE, the literature on FSE 
is quite limited but growing quickly to understand its mathematical and physical properties.

More precisely, we consider here the following generalized dimensionless (space-) Fractional NonLinear Schrödinger 
equation (FNLSE) with a rotation term and a nonlocal nonlinear interaction

i∂tψ(x, t) =
[

1

2

(
−∇2 + m2

)s + V (x) + β|ψ(x, t)|2 + λ�(x, t) − �Lz

]
ψ(x, t), (1.1)

�(x, t) = U ∗ |ψ(x, t)|2, x ∈Rd, t > 0, d ≥ 2. (1.2)

In the context of BEC, this equation is also called as FGPE. Here, ψ(x, t) is the complex-valued wave-function, t > 0 is 
the time variable and x ∈ Rd is the spatial coordinate. The constant m ≥ 0 denotes the scaled particle mass, with m = 0
representing the massless particle. The parameter s > 0 is the space fractional order characterizing the nonlocal dispersive 
interaction. Hereafter, we call the fractional dispersion as superdispersion (subdispersion) for s > 1 (s < 1). In addition, the 
fractional kinetic operator is defined via a Fourier integral operator(

−∇2 + m2
)s

ψ = 1

(2π)d

∫
Rd

ψ̂(k) (|k|2 + m2)seik·xdk, (1.3)

where the Fourier transform is given by ψ̂(k) = ∫
Rd ψ(x)e−ik·xdx. The potential V (x) is supposed to be trapping, a standard 

example being the harmonic potential given by

V (x) =
⎧⎨⎩

γ 2
x x2+γ 2

y y2

2 , d = 2,

γ 2
x x2+γ 2

y y2+γ 2
z z2

2 , d = 3,

(1.4)

where γv (v = x, y, z) is the trapping frequency in the v-direction. The real-valued constants β and λ characterize the local 
and nonlocal interaction strengths (positive/negative for repulsive/attractive interaction), respectively. The local interaction is 
supposed to be cubic, but other choices may also be considered. Concerning the nonlocal interaction (1.2), the convolution 
kernel U(x) can be chosen as either the kernel of a Coulomb-type interaction or a Dipole–Dipole Interaction (DDI) [13,16,21]

U(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2d−1π |x|μ , 0 < μ ≤ d − 1,

−δ(x) − 3 ∂nn

(
1

4π |x|
)

,

− 3
2

(
∂n⊥n⊥ − n2

3∇2⊥
)( 1

2π |x|
)

,

⇐⇒ Û(k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C

|k|d−μ , 0 < μ ≤ d − 1, Coulomb,

−1 + 3(n·k)2

|k|2 , 3D DDI,

3[(n⊥·k)2−n2
3|k|2]

2|k| , 2D DDI,

(1.5)

where C = πd/2−121−μ�(
d−μ

2 )/�(
μ
2 ) (�(t) := ∫ ∞

0 xt−1e−xdx is the Gamma function), n = (n1, n2, n3)
T ∈ R3 is a unit vector 

representing the dipole orientation and n⊥ = (n1, n2)
T . In addition, Lz = −i(x∂y − y∂x) = −i∂θ is the z-component of the 

angular momentum, � represents the rotating frequency.
The FNLSE conserves two important physical quantities (see Section 4.1): the mass

N (ψ(·, t)) := N (t) :=
∫
Rd

|ψ(x, t)|2dx ≡ N (0), (1.6)

and the energy

E(ψ(·, t)) =: E(t) =
∫
Rd

[1

2
ψ̄

(−∇2 + m2)s
ψ + V (x)|ψ |2 + β

2
|ψ |4 + λ

2
�|ψ |2 − �ψ̄ Lzψ

]
≡ E(0). (1.7)

Here, ψ̄ is the complex conjugate of ψ . The ground states φg(x) of the FNLSE (1.1) are defined by

φg(x) = arg min
φ∈S

E(φ), S = {φ ∈C| ‖φ‖2 = 1,E(φ) < ∞}, (1.8)

where ‖φ‖2 is the L2(Rd)-norm of φ.
The FNLSE (1.1) brings together a wide range of Schrödinger-type PDEs. When s = 1 and m = 0, FNLSE reduces to the 

standard nonlinear Schrödinger equation (NLSE), which has been extensively studied both theoretically and numerically [2,
3,5–7,9,12–16,20,25]. For s ∈ (0, 1) and � taken as the Coulomb potential, (1.1) reduces to the generalized semi-relativistic 
Hartree equation. The corresponding Cauchy problem (for s ∈ [ 1

2 , 1]) as well as its ground state properties (for s = 1
2 ) 
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