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We present a robust algorithm for the computation of electromagnetic fields radiated 
by point sources (Hertzian dipoles) in cylindrically stratified media where each layer 
may exhibit material properties (permittivity, permeability, and conductivity) with uniaxial 
anisotropy. Analytical expressions are obtained based on the spectral representation of 
the tensor Green’s function based on cylindrical Bessel and Hankel eigenfunctions, and 
extended for layered uniaxial media. Due to the poor scaling of these eigenfunctions 
for extreme arguments and/or orders, direct numerical evaluation of such expressions 
can produce numerical instability, i.e., underflow, overflow, and/or round-off errors under 
finite precision arithmetic. To circumvent these problems, we develop a numerically stable 
formulation through suitable rescaling of various expressions involved in the computational 
chain, to yield a robust algorithm for all parameter ranges. Numerical results are presented 
to illustrate the robustness of the formulation including cases of practical interest.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Analysis of electromagnetic fields in cylindrically stratified media is of great importance in many applications, such as 
borehole geophysics [1–3]. This is a classical problem with separable geometry where the components of the tensor Green’s 
function can be expressed in generic form as [4, Ch. 3],[5]

∞∑
n=−∞

ein(φ−φ′)
∞∫

−∞
dkzeikz(z−z′)�n(ρ,ρ ′), (1)

where the integrand factor �n(ρ, ρ ′) contains various products of cylindrical Bessel and Hankel functions. When applicable, 
such solutions are often preferred to brute-force numerical methods such as finite elements and finite difference [6–15]
since the former can provide very accurate results with computational costs that are orders of magnitude smaller than the 
latter. This is especially important for inverse algorithms relying on repeated forward solutions and which seek to determine 
sought-after physical parameter values (say, layer resistivities) from the knowledge of the field values (measured) at certain 
subterranean locations.
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However, numerical computations directly based on the canonical expressions of this problem can lead to underflow and 
overflow issues in finite precision arithmetic. This is caused by the poor scaling of cylindrical Bessel and Hankel functions for 
extreme arguments and/or orders, which occur for low frequencies of operation and/or extreme values for layer resistivities. 
In addition, convergence problems in the numerical evaluation of the spectral integral on the longitudinal wavenumber kz
may occur depending on the separation distance between the source (ρ ′, φ′, z′) and observation point (ρ, φ, z) as well as 
on the operation frequency. To circumvent these problems, a stable formulation based on a suitable analytical conditioning 
of the various factors in the computational chain and a proper choice of deformed integration paths in the complex kz
plane was recently put forth in [5]. This formulation was shown to be robust to variations on physical parameters that span 
several orders of magnitude. A related formulation to compute static fields (electric potentials) due to current electrodes in 
isotropic layers was described in [16].

In this work, we extend the formulation presented in [5] to account for scenarios where the layers comprising the 
cylindrical stratified media may exhibit anisotropic properties. In borehole geophysics, anisotropy is quite common [17–37]
and may result from geological factors affecting the various Earth layers such as salt water penetrating porous fractured 
formations and thereby increasing the conductivity in the direction parallel to the fracture and/or the presence of clay and 
sand laminates with directionally dependent resistivities. Here, for generality, we assume each layer to be doubly uniaxial, 
i.e., both the complex permittivity tensor ε (which includes the conductivity tensor) and the permeability tensor μ are 
independently uniaxial, which facilitates the analysis of equivalent problems using electromagnetic duality [4, Ch. 1].

2. Fields in cylindrically-layered uniaxial media

Most of the basic notation and terminology is adopted from [4, Ch. 3]. The section can be regarded as a generalization 
of the formulation presented for isotropic layers in [5] to uniaxial anisotropic layers.

2.1. General solution in homogeneous, uniaxial media

Maxwell’s curl equations in uniaxial, homogeneous, and source-free media (with time-harmonic dependence e−iωt as-
sumed) read as

∇ × E = iωμH, (2)

∇ × H = −iωεE, (3)

where μ and ε are the permeability tensor and complex permittivity tensor, respectively. In the unixial case, μ is written 
as

μ =
⎡⎢⎣μh 0 0

0 μh 0

0 0 μv

⎤⎥⎦ , (4)

where μh and μv are the horizontal and vertical permeabilities, resp. The complex permittivity tensor ε includes the 
electric conductivity and it is written as

ε =
⎡⎢⎣εh 0 0

0 εh 0

0 0 εv

⎤⎥⎦=
⎡⎢⎣εp,h + iσh/ω 0 0

0 εp,h + iσh/ω 0

0 0 εp,v + iσv/ω

⎤⎥⎦ , (5)

where εp,h and εp,v are horizontal and vertical permittivities, and σh and σv are horizontal and vertical conductivities, resp. 
In such source-free media, the divergence equations can be written as

∇ ·
(
ε · E

)
= 0, (6)

∇ ·
(
μ · H

)
= 0. (7)

Note that in general ∇ · E and ∇ · H in uniaxial and source-free media are nonzero. Indeed, the left hand side of (6) in 
cylindrical coordinates is written as

∇ · εE = εh

{
1

ρ

∂
(
ρEρ

)
∂ρ

+ 1

ρ

∂ Eφ

∂φ
+ ∂ Ez

∂z
−
(

1 − εv

εh

)
∂ Ez

∂z

}
= εh

{
∇ · E −

(
1 − εv

εh

)
∂ Ez

∂z

}
. (8)

From (6) and (8), we can obtain

∇ · E =
(

1 − εv

εh

)
∂ Ez

∂z
. (9)
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