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Filtering of particle-based simulation data can lead to reduced computational costs and 
enable more efficient information transfer in multi-scale modelling. This paper compares 
the effectiveness of various signal processing methods to reduce numerical noise and 
capture the structures of nano-flow systems. In addition, a novel combination of these 
algorithms is introduced, showing the potential of hybrid strategies to improve further the 
de-noising performance for time-dependent measurements. The methods were tested on 
velocity and density fields, obtained from simulations performed with molecular dynamics 
and dissipative particle dynamics. Comparisons between the algorithms are given in terms 
of performance, quality of the results and sensitivity to the choice of input parameters. The 
results provide useful insights on strategies for the analysis of particle-based data and the 
reduction of computational costs in obtaining ensemble solutions.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Numerical simulation is an essential tool for gaining a better understanding of many physical phenomena that can be 
difficult to describe with analytical methods or experimental studies. The statistical mechanics of complex systems is often 
analysed with molecular dynamics (MD) [1], Monte Carlo methods, e.g. direct simulation Monte Carlo (DSMC) [2] or dissi-
pative particle dynamics (DPD) [3]; a comprehensive summary of all the modelling strategies can be found in Karniadakis 
et al. [4]. These procedures can be used to resolve accurately the dynamics at atomistic, meso- and micro-scales and are 
widely used to simulate nano/micro flows confined in channels such as carbon nanotubes [5,6]. In addition, information ob-
tained from molecular simulations forms the basis of new and emerging hybrid multi-scale modelling methods for physical 
and biological applications (see [7] for a review). Examples demonstrating the ubiquity of multi-scale, multi-physics applica-
tions include the dynamics of complex fluid flows [8], the classical turbulence problem [9], meteorological predictions [10], 
chemical and biological reactions [11]. Moreover, there is significant potential to apply multi-scale techniques to sociological 
problems, such as crowd and traffic flow [12].
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The central problems with all particle-based and multi-scale modelling are the computational cost of the simulations
and the accurate measurement and transfer of information across disparate length and time scales; there currently exist 
many sources of uncertainty and noise disturbing this intra-scale transfer, with an associated loss of simulation fidelity. 
Circumventing this problem often requires large samples and long averaging periods, resulting in computationally expensive 
calculations.

The objective of this paper is to investigate the capabilities of a number of mathematical algorithms introduced in the 
literature to assist noise reduction in particle-based modelling. A number of benchmark fluid flow problems, performed 
with molecular dynamics and dissipative particle dynamics, are used to investigate the usefulness of the considered meth-
ods and provide guidelines on how the algorithms can be successfully applied. The main focus of this paper is on novel 
procedures that provide rapid, adaptive, noise-free coarse-graining of micro-scale phenomena, and can further be employed 
in molecular-continuum simulations.

In this paper, new algorithms are proposed that combine the strengths of proper orthogonal decomposition (POD) with 
other techniques, hereafter referred to as POD+ methods, in order to achieve better efficiency in processing time-dependent 
fields. This work directly tackles the important challenge of extracting information from the data without significant addi-
tional computational cost.

The paper is organised as follows: the basic theory for the methods is described in Sec. 2. A comparison of the per-
formance of each technique in de-noising particle-based simulations is presented in Sec. 3, followed by remarks and 
recommendations for the use of the methods under investigation.

2. Theoretical background

In the following section we briefly review the numerical methods employed. First, we discuss algorithms based on sin-
gular value decomposition (or eigenvalue decomposition) and QR decomposition. The second part of the review focuses on 
strategies using wavelet transforms, wavelet thresholding and the WienerChop filter [13]. We also discuss the application of 
empirical mode decomposition to noise reduction. Novel couplings of proper orthogonal decomposition to these algorithms 
are introduced at the end of the Section.

2.1. Noise filtering with singular value decomposition and QR factorisation

2.1.1. Proper orthogonal decomposition
Define an element A(τ s, x) of the real N × M matrix as a measurement from the x-th probe taken at the τ s-th time 

instant. Proper orthogonal decomposition can be done either by eigenvalue decomposition (EVD) of the symmetric matrix 
C = A A† (A† A if N > M),1 or by singular value decomposition of A:

A = U�V †, (1)

where, in the case of full SVD, U is an N × N orthogonal matrix, V is an M × M orthogonal matrix, and � is an N × M
diagonal matrix. Columns of U and V are left and right singular vectors, respectively. The diagonal entries of �, called 
singular values, are the square roots of eigenvalues, sn = √

λn for s1 ≥ s2 ≥ . . . ≥ sn ≥ 0, where λn is the n-th eigenvalue of 
the diagonal matrix.

If A is a collection of measurements corrupted by additive noise, it can be represented in the form A = At + B , where 
At is a matrix that contains the true signals, and B denotes the noise. Given the decomposition in Eq. (1), the rank-k
approximation of A can be written in vector form as

Ak(τ
s, x) =

k∑
n=1

snun v†
n, (2)

where 1 ≤ k ≤ min(N, M), un and vn are the orthonormal (temporal or spatial) POD modes corresponding to the n-th 
columns of the matrices U and V , respectively. The key property of POD is that Ak is optimal in the sense that 
min 

{‖At − Ak‖2
F

} = ∑min(N,M)

n=k+1 s2
n , where ‖.‖F is the Frobenius norm. In this paper, the rank k is referred to as the number 

of dominant modes. A practical implementation of POD based on time-windows (WPOD) described by Grinberg [14], can be 
used for particle-based simulations.

The main challenge in estimation of At is the choice of the truncation parameter. One possible approach for defining the 
rank k is to select a cumulative percentage of total variation which modes should contribute. Unfortunately, such cut-off is 
often insufficient, as important aspects of the observables can be present in the direction of low variance modes. Therefore, 
in addition to studying the energy content of eigenvalues, most of the reported data is analysed here with the log-eigenvalue 
diagram (LEV), log10(λn = s2

n), based on the assumption that if higher singular vectors represent uncorrelated noise, then the 
corresponding λn should decay exponentially with increasing n [15]. We also considered the smoothness of the temporal 

1 The superscript † indicates matrix transpose since A ∈R.
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