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1. Introduction

With increasing pressure to reduce the risks of climate change
due to fossil fuel combustion, there is growing interest in opti-
mizing the design of urban settlements for the exploitation of
solar radiation both to reduce energy demands for heating and
artificial lighting and to convert into heat (for hot water) and
electricity. But past optimisation studies [1–7] have been based on
manual trial and error, testing a limited number of subjectively
conceived propositions using either physical or numerical tools.
Far more powerful would be the coupling of computational
algorithms with numerical ray tracing techniques to search the
available parameter space for an optimum. Moreover the ray
tracing tool should be capable of efficiently predicting the integral
of solar irradiance received on built surfaces throughout a given
time period (seasonal or annual). In this paper we describe how we
have achieved these objectives. First we discuss the principles of
optimisation algorithms and briefly review some of the different
approaches that have thus far been explored, before selecting
two specific algorithms (covariance matrix adaptation algorithm

(CMA-ES) and hybrid differential evolution (HDE)) which we
proposed to hybridise. We then describe the procedure we have
followed in performing this hybridisation before finally testing the
new algorithm using standard benchmark tests (the Ackley and
Rastrigin functions) and a solar energy potential optimisation
problem. As part of this latter we describe the method employed to
efficiently solve for long-term solar irradiation simulation.

1.1. Optimisation algorithms

In all generality, we want to find the global maximum (or
maxima) of a function f that depends on n independent decision
variables. In formal terms, we are looking for the supremum (set of
variables that maximises the function) as in the following equation:

su p f f ð~xÞj~x2M�Rng (1)

with:

n2N

dimension of the problem

f : M!R

objective function

M ¼ f~x2Rnjg jð~xÞ�0; 8 j2f1; . . . ;mgg;M 6¼?
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A B S T R A C T

This paper describes the results of initial experiments to apply computational algorithms to explore a

large parameter space containing many variables in the search for an optimal solution for the sustainable

design of an urban development using a potentially complicated fitness function. This initial work

concentrates on varying the placement of buildings to optimise solar irradiation availability. For this we

propose a hybrid of the covariance matrix adaptation evolution strategy (CMA-ES) and hybrid differential

evolution (HDE) algorithms coupled with an efficient backwards ray tracing technique. In this paper we

concentrate on the formulation of the new hybrid algorithm and its testing using standard benchmarks as

well as a solar optimisation problem. The new algorithm outperforms both the standalone CMA-ES and

HDE algorithms in benchmark tests and an alternative multi-objective optimisation tool in the case of the

solar optimisation problem.
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feasible region

m2N

number of constraints

The set of inequality restrictions g j : Rn!R; 8 j2f1; . . . ;mg
includes a special case of constraints due to the domain boundaries
Li � xi � Hi; 8 i ¼ 1; . . . ;n. ~L is named the lower bound and ~H the
upper bound of the domain.

When the function to optimise exhibits a non-differentiable,
non-linear behaviour and is multi-modal, it justifies the choice of
heuristic methods such as evolutionary algorithms (EA). EA is a
family of optimisation methods based upon the principles of
Darwinian natural selection [8–10]. They are population-based
heuristic algorithms, where each individual represents a potential
solution of the function to optimise. The operators of recombina-
tion, mutation and selection are applied to get closer to a best
solution through population generations.

The first evolutionary algorithms proposals come from the
mid-60s with genetic algorithms (GAs) from Holland [11] at the
University of Michigan, evolutionary programming (EP) from
Fogel [12] at the University of California in San Diego and
independently evolution strategies (ES) from Rechenberg [13] at
the Technical University of Berlin. Their work brought a wide class
of optimisation methods for difficult problems where few is
known about the underlying search space. Koza [14], with the
development of genetic programming (GP) beginning of 1990s,
enriched the trend of evolutionary algorithms.

Facing a multitude of methods and approaches, we have made
an arbitrary choice of focusing our attention to the evolution
strategies branch of evolutionary algorithms. Evolution strategies
were first developed by Rechenberg [13] and Schwefel [15] and
have evolved into the cumulative step-path adaptation algorithm
(CSA-ES) [16,17] and the CMA-ES [18,19]. The variables of the
function to optimise are coded using a floating-point representa-
tion and are associated in phenotypes with standard deviations for
mutation purpose. CMA-ES have been used to solve many
optimisation problems [19] and are regarded as one of the best
algorithm for real-value coded variables. In [19] Hansen and Kern
concludes that CMA-ES is outperformed by differential evolution
(DE) only if the function to optimise is additively separable.

Differential evolution was developed by Storn and Price in 1996
[20] and has proved to be another good candidate for real-value
optimisation problem solving. DE is very simple to implement and
relies only on variables with a floating point representation. The
method is based on stochastic search; one of its drawbacks is the
need for a large population to overcome local optima. Chang et al.
[21] developed a hybrid algorithm of differential evolution to allow
the use of a smaller population. However, for all kinds of DE, the
results are very sensitive to the algorithm control parameters [22].
They must be well chosen for a good performance.

From Hansen and Kern’s conclusion [19] we considered that a
hybrid CMA-ES/HDE algorithm might combine the advantages of
the two optimisation methods, since in real life applications we
tend to face optimisation problems where the dependence of the
function on its variable is unknown. It might be a good compromise
in terms of robustness and convergence speed, as it should perform
well on additively and non-additively separable functions.

2. Hybrid CMA-ES and HDE algorithm

In this section, we start with a general description of EA, a brief
introduction to the CMA-ES and the HDE algorithms, and continue
by describing the proposed hybridisation of the two methods
(detailed descriptions can be found for CMA-ES in [18,19], for DE in
[20,23] and HDE in [21]).

2.1. Evolutionary algorithms

A population of m individuals, each representing a potential
solution within the domain boundaries, is randomly chosen as a
starting point. The population goes through three operators to
evolve: recombination between individuals, random mutation of
their alleles and selection of the fittest. One iteration of the strategy
is a step from a population Pn to Pnþ1, where n is the generation
number, and can be written as

Pnþ1 :¼ o ptEAðPnÞ (2)

The optimisation of Pn is defined by the operators sel (selection),
mut (mutation) and rec (recombination) in the following way:

o ptEA :¼ sel�ðmut�recÞl (3)

where l corresponds to the number of new individuals (children).
According to the type of EA, a phase of adaptation of the

parameters or migration of individuals might follow from their
selection. The termination criterion for each iteration is met when
the maximum number of function evaluations is reached. Since
this is roughly proportional to the total computing time, we are
able to define an (approximate) upper limit of time required for the
optimisation process. When reached, the algorithm exits and
returns the best individual.

2.2. Covariance matrix adaptation evolution strategy

Each individual in the population P ¼ f~a1;~a2; . . . ;~amg referred to
by an index k ¼ 1; . . . ;m has a phenotype ~ak ¼ ð~xk;~zkÞ with
~xk;~zk 2Rn, where ~xk is the standard ES parameter vector and ~zk

is the associated standard deviation vector. Three matrices are
needed for the algorithm: the covariance matrix C 2Rn�n, the
eigenvector matrix of C named B2Rn�n and the diagonal matrix of
the square rooted eigenvalues of C named D2Rn�n. The m
individuals of the initial population are randomly defined (~xk

are randomly chosen within the domain boundaries of f and~zk are
set to the null vector). Matrix B is set to the identity matrix, the
diagonal matrix D is set to represent the domain boundaries
Dii ¼ Hi � Li; 8 i ¼ 1; . . . ;n. C is calculated as the product of BD and
its transpose: BD � ðBDÞt .

2.2.1. Recombination

Using the global weighted intermediate recombination method
in conjunction with a sorted population (the best individual is
number 1, the worst is m), l identical children are created with a
phenotype:

ð~xhÞi ¼
Xm
k¼1

vk � ð~xkÞi; 8 i ¼ 1; . . . ;n (4)

ð~zhÞi ¼ 0; 8 i ¼ 1; . . . ;n (5)

in which the individual index h goes from ðmþ 1Þ to ðmþ lÞ and vk

are the weights of the recombination, which are themselves
parameters of the algorithm. In this study we take vk ¼ ðlog ðmþ
1Þ � log ðkÞÞ=

Pm
l¼1ðlog ðmþ 1Þ � log ðlÞÞ from [18], which gives

more weight to the best individuals of the population.

2.2.2. Mutation

The main mechanism of the implemented operator is changing
the allele values by adding random noise drawn from a normal
distribution. The randomness from the normal distribution is stored
in the individual phenotype and used in the adaptation phase. The
mutation acts on each of the l children with a modification of their
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