
Journal of Visual Languages and Computing 42 (2017) 23–30

Contents lists available at ScienceDirect

Journal of Visual Languages and Computing

journal homepage: www.elsevier.com/locate/jvlc

Detecting and resolving deadlocks in mobile agent systems

Yong Yang

a , Wei Lu

a , ∗, Weiwei Xing

a , Liqiang Wang

b , Xiaoping Che

a , Lei Chen

a

a School of Software Engineering, Beijing Jiaotong University, Beijing 10 0 044, China
b Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA

a r t i c l e i n f o

Article history:

Received 15 January 2017

Revised 10 August 2017

Accepted 13 August 2017

Available online 18 August 2017

Keywords:

Deadlock detection

Deadlock resolution

Mobile agent system

Concurrent execution

Priority-based

Lazy reaction

a b s t r a c t

Mobile agents environment is a new application paradigm with unique features such as mobility and au-

tonomy. Traditional deadlock detection algorithms in distributed computing systems do not work well in

mobile agent systems due to the unique feature property of the mobile agent. Existing deadlock detec-

tion and resolution algorithms in mobile agent systems have limitations such as performance inefficiency

and duplicate detection/resolution when multiple mobile agents simultaneously detect/resolve the same

deadlock. To address these problems, we propose an improved deadlock detection and resolution algo-

rithm that adopts priority-based technique and lazy reaction strategy. The priority-based technique aims

to ensure that there is only one instance of deadlock detection and resolution, and it also helps reduce

mobile agent movement and data traffic together with the lazy reaction strategy. The liveness and safety

properties of the proposed algorithm are proved in this paper. Theoretical analysis and experimental re-

sults show that the proposed algorithm provides better performance in terms of agent movement, data

traffic, and execution time.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

A mobile agent represents a software object that migrates

through multiple host machines in a heterogeneous network. It

controls its own movement in order to perform tasks by consum-

ing resources on different host machines [17] . Advantages of mo-

bile agent include mobility, autonomy, sociality, reactivity, proactiv-

ity, data acquisition, and route determination [3,4,8,9,11,19] . How-

ever, mobile agent technology also introduces some new chal-

lenges, such as deadlock, rendezvous, leader election, itinerary for-

mal description, trustworthy, and scheduling, while bringing bene-

fits [1,5,12,22] .

In many traditional distributed applications, there exists a

strong relationship between the code and data, which leads to

various assumptions that may no longer be valid when mobile

agents are involved [1,2,5] . Take deadlock detection for instance,

traditional deadlock detection algorithms rely on the hypothesis

that a process and its locked resources are in the same host ma-

chine, which makes it difficult to apply traditional deadlock de-

tection algorithms to mobile agent systems. In addition, existing

algorithms of deadlock detection in mobile agent systems mainly

focus on performance improvement under single execution (i.e. ,

only one mobile agent detects or resolves a deadlock at any given

∗ Corresponding author.

E-mail address: luwei@bjtu.edu.cn (W. Lu).

time). In practice, multiple mobile agents may simultaneously de-

tect the same deadlock (i.e. , concurrent execution), which makes

the problem more complex [6,13,14,20] . For example, algorithm

performance may be degraded significantly under concurrent ex-

ecution due to more agent movements and data transmissions.

In this paper, we propose an improved priority-based deadlock

detection algorithm with a lazy reaction strategy. The proposed al-

gorithm supports both single execution and concurrent execution.

In the proposed algorithm, a mobile agent with higher priority sus-

pends the movement of another mobile agent with a lower pri-

ority. Only the mobile agent with the highest priority can collect

all necessary wait-for relationships among all deadlocked mobile

agents. Then, this mobile agent constructs a Wait-For Graph (abbr. ,

WFG, which is a directed graph where a vertex represents a mobile

agent and an edge indicates the wait-for relationship between two

mobile agents [10]). Deadlocks can be detected through checking a

cycle in the constructed WFG. To reduce mobile agent movements,

we adopt a lazy reaction strategy when a mobile agent is visiting

another mobile agent. This improves the algorithm performance by

reducing both mobile agent movements and data transmissions.

The proposed algorithm can be roughly divided into three

phases: algorithm initiation, deadlock detection, and deadlock res-

olution. In the first phase, a consumer agent launches the deadlock

detection algorithm by creating a detection agent. In deadlock de-

tection phase, each detection agent creates necessary probe agents.

All detection agents and probe agents cooperate to collect wait-

http://dx.doi.org/10.1016/j.jvlc.2017.08.002

1045-926X/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.jvlc.2017.08.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jvlc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2017.08.002&domain=pdf
mailto:luwei@bjtu.edu.cn
http://dx.doi.org/10.1016/j.jvlc.2017.08.002

24 Y. Yang et al. / Journal of Visual Languages and Computing 42 (2017) 23–30

for relationships, construct WFG, and detect deadlocks. In the last

phase, a resolution agent will be created and moves to victim con-

sumer agents for conveying deadlock resolution.

The rest of this paper is organized as follows. Section 2 re-

views the related work. Prerequisites and assumptions are given

in Section 3 . The proposed algorithm is introduced in Section 4 .

Section 5 gives proofs of the liveness and safety properties.

Section 6 illustrates theoretical analysis and experimental results.

Section 7 gives conclusions and future work.

2. Related work

In this section, we review the related work

[1,2,5,7,15,16,18,21] on deadlock detection and resolution in

mobile agent systems.

Ashfield et al. propose an edge chasing based deadlock detec-

tion algorithm with dedicated shadow agents [1,2] . A consumer

agent creates a shadow agent to monitor its activities when it re-

quests an exclusive lock of a resource. The shadow agent creates

a detection agent to perform deadlock detection if the consumer

agent has been blocked for a predefined time interval. The detec-

tion agent constructs a WFG, then detects and resolves a deadlock

by visiting related shadow agents and collecting wait-for relation-

ship of the consumer agent. This algorithm has some limitations

such as undetected deadlocks, false deadlock detection, and too

many detection agent movements [5,7] .

Based on [1,2] , Hosseini et al. present an improved algorithm

[7] that assigns priorities to both resources and consumer agents.

The detection agent with the lowest priority created by a con-

sumer agent suspends other detection agents with higher priori-

ties. Therefore, only the detection agent with the lowest priority

can pass through the whole cycle and return under concurrent ex-

ecution. However, this algorithm is limited by the order in which a

detection agent visits other consumer agents. Performance is de-

graded significantly if a consumer agent is visited by detection

agents when priorities of these detection agents are in descending

order. In this case, wait-for relationships collected by a detection

agent is duplicate and useless. In other words, there exists redun-

dant collection of the same wait-for relationships.

Elkady proposes a path pushing based algorithm to detect dead-

lock [5] . This algorithm asserts a deadlock when a detection agent

visits a consumer agent twice. In addition, it supports deadlock

avoidance and concurrent execution. However, it does not con-

sider the problem of performance inefficiency and duplicate detec-

tion/resolution under concurrent execution.

Yang proposes two deadlock detection algorithms named MA-

WFG and Host- WFS [21] . In the MA-WFG algorithm, a mobile agent

tries to construct a WFG to detect a loop topology. Locally con-

structed WFG will be passed to the mobile agent that locks the re-

quired resource to construct its local WFG. A deadlock is detected

if there is a loop topology in the constructed WFG. To reduce agent

movements and the network load, Host-WFS algorithm encodes

the WFG in the form of “wait-for set” and distributes them to dif-

ferent host machines. Thus, the host machines control path push-

ing, and mobile agents do not need to participate in path pushing.

However, propagation of WFG leads to large amount of message

transmissions that cause heavy data traffic.

Mani et al. [15,16] design diagrams and models resembling

the standard Unified Modeling Language (UML) to describe the

architecture-independent structure of agents and their interactions.

They propose an algorithm to extract scenarios that express the

overall functionality and behaviors from Multi-agent Software En-

gineering Models. Scenarios are used to examine the system for

possible design faults. Due to the problem of state explosion, this

approach can not detect all run-time errors.

Sofy and Sarne propose a game-theoretic based approach

to handle distributed deadlock resolution of autonomous self-

interested partially rational agents [18] . They do not consider the

performance degradation under concurrent execution, and focus on

the deadlock resolution rather than deadlock detection.

There are some limitations in existing deadlock detection algo-

rithms.

1) Performance is degraded under concurrent execution due to

duplicate transmission of the same wait-for relationships dur-

ing mobile agent movement.

2) There may be non-optimal or wrong deadlock resolution under

concurrent execution.

3. Prerequisites

3.1. Abbreviations

1) CA (Consumer Agent): It performs common tasks and commu-

nicates with host environment to request and lock a resource. It

is inactive in the deadlock detection procedure but can spawn

a detection agent.

2) DA (Detection Agent): It is spawned by CA and manages dead-

lock detection and resolution procedures.

3) PA (Probe Agent): It is spawned by DA and responsible for col-

lecting wait-for relationships between consumer agents.

4) RA (Resolution Agent): It is spawned by DA and responsible for

conveying deadlock resolutions.

3.2. Assumptions

We assume that mobile agent systems satisfy the following con-

ditions.

1) Network organization independence: Neither the host machines

nor the mobile agents maintain the state about the size or

topology of the network. The deadlock detection and resolution

algorithm should not depend on a particular topology of under-

lying network.

2) Agent movement: Mobile agents are allowed to move around in

the system and lock granted resources.

3) Fault tolerance: A failed host machine or a mobile agent can be

recovered.

Based on the above premises, we give some assumptions as fol-

lows.

1) Host Environment, which is an execution environment for mo-

bile agents, provides APIs to mobile agents. A mobile agent

communicates with the host environment to obtain needed in-

formation through these APIs. Host environment is the ultimate

authority that allows or denies a resource locking request.

2) Each mobile agent can lock multiple resources; however, it can

request only one resource at any moment and does not re-

quest resource anymore when it is blocked. A mobile agent can

choose to be blocked when the resource locking request is de-

nied, or neglect the rejection and perform other tasks. A mo-

bile agent can move through the network without being lost or

tampered. A mobile agent makes the decision of moving by it-

self within an uncertain but finite time. A mobile agent can be

located through its itinerary (which is recorded in the visited

host environments) by the techniques in [12,22] .

3) Both mobile agents and host environments have global unique

identities in the system through techniques such as static path

proxy or naming service. 1

1 We assume that there exists a method to obtain a globally unique identity in

a mobile agent system. It is another research topic beyond the scope of this paper.

Download English Version:

https://daneshyari.com/en/article/4968149

Download Persian Version:

https://daneshyari.com/article/4968149

Daneshyari.com

https://daneshyari.com/en/article/4968149
https://daneshyari.com/article/4968149
https://daneshyari.com

