
Contents lists available at ScienceDirect

Journal of Visual Languages and Computing

journal homepage: www.elsevier.com/locate/jvlc

A systematic approach to constructing incremental topology control
algorithms using graph transformation

Roland Klugea,⁎, Michael Steinb, Gergely Varróa, Andy Schürra,⁎⁎, Matthias Hollickc,
Max Mühlhäuserb

a Real-Time Systems Lab, Merckstr. 25, 64283 Darmstadt, Germany
b Telecooperation Group, Hochschulstr. 10, 64289 Darmstadt, Germany
c Secure Mobile Networking Lab, Mornewegstr. 32, 64293 Darmstadt, Germany

A R T I C L E I N F O

Keywords:
Model-driven software engineering
Graph transformation
Graph constraint
Topology control
Static analysis
Correct by construction

A B S T R A C T

Communication networks form the backbone of our society. Topology control algorithms optimize the topology
of such communication networks. Due to the importance of communication networks, a topology control
algorithm should guarantee certain required consistency properties (e.g., connectivity of the topology), while
achieving desired optimization properties (e.g., a bounded number of neighbors). Real-world topologies are
dynamic (e.g., because nodes join, leave, or move within the network), which requires topology control
algorithms to operate in an incremental way, i.e., based on the recently introduced modifications of a topology.
Visual programming and specification languages are a proven means for specifying the structure as well as
consistency and optimization properties of topologies. In this paper, we present a novel methodology, based on
a visual graph transformation and graph constraint language, for developing incremental topology control
algorithms that are guaranteed to fulfill a set of specified consistency and optimization constraints. More
specifically, we model the possible modifications of a topology control algorithm and the environment using
graph transformation rules, and we describe consistency and optimization properties using graph constraints.
On this basis, we apply and extend a well-known constructive approach to derive refined graph transformation
rules that preserve these graph constraints. We apply our methodology to re-engineer an established topology
control algorithm, kTC, and evaluate it in a network simulation study to show the practical applicability of our
approach.

1. Introduction

Topology control (TC) is an important research area in the wireless
network communication domain. TC aims at adapting the topology of
wireless networks to optimize, for instance, the total power consump-
tion, while maintaining crucial constraints of the topology (e.g.,
connectivity) [1–5]. A TC algorithm typically works by (i) first selecting
a subset of the links of the original topology so that all required
constraints are fulfilled, and (ii) then adjusting the transmission power
of each node to reach its farthest neighbor across one of these selected
links. In realistic settings, context events such as movement of sensor
nodes continuously modify the structure of a topology. Therefore, a TC
algorithm should operate in an incremental way by efficiently updating
only the affected subset of links based on the occurred context events.

The development of a TC algorithm is performed by highly skilled

and experienced professionals. The development process usually starts
with an informal specification of the basic properties of a TC algorithm.
This informal description is then supplemented by a formal specifica-
tion using a theoretically well-founded framework such as graph theory
[6–8] or game theory [9,10], which allows to prove that the algorithm
preserves all required constraints. The first evaluation of a TC algo-
rithm is typically carried out using a network simulator, which may be
succeeded by a second evaluation in a testbed environment, i.e., on real
wireless devices. Both types of evaluation require an implementation of
the TC algorithm in one or—most often—two programming languages,
such as Java or MATLAB for the simulation and C or C++ for the
testbed evaluation [11]. This means that, in the end, the (hopefully)
same TC algorithm is represented in two or three more or less
completely different representations. In research publications, often
only the formalization (along with the proofs of correctness and

http://dx.doi.org/10.1016/j.jvlc.2016.10.003
Received 30 November 2015; Received in revised form 24 May 2016; Accepted 14 October 2016

⁎ Corresponding author
⁎⁎ Principal corresponding author
E-mail addresses: roland.kluge@es.tu-darmstadt.de (R. Kluge), michael.stein@tk.informatik.tu-darmstadt.de (M. Stein), gergely.varro@es.tu-darmstadt.de (G. Varró),

andy.schuerr@es.tu-darmstadt.de (A. Schürr), matthias.hollick@seemoo.tu-darmstadt.de (M. Hollick), max@informatik.tu-darmstadt.de (M. Mühlhäuser).

Journal of Visual Languages and Computing 38 (2017) 47–83

Available online 29 October 2016
1045-926X/ © 2016 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/1045926X
http://www.elsevier.com/locate/jvlc
http://dx.doi.org/10.1016/j.jvlc.2016.10.003
http://dx.doi.org/10.1016/j.jvlc.2016.10.003
http://dx.doi.org/10.1016/j.jvlc.2016.10.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2016.10.003&domain=pdf


optimality) and a pseudo-code representation of the TC algorithm is
given, while the implementations are typically omitted. Still, even for
skilled researchers, it may be difficult to verify that the pseudo code is a
valid implementation of the formal specification.

In the following, we illustrate this by means of the Cooperative
Topology Control Algorithm (CTCA), proposed by Chu and Sethu in an
IEEE INFOCOM paper in 2012 [12]. The authors first give a graph-
based intuition of the proposed TC algorithm, which shall lead to an
improved distribution of the nodes' lifetimes in a wireless sensor
network [12], Section 3. The resulting goals are then formalized as so-
called ordinary potential game [13], which allows to prove that the
proposed algorithm eventually leads to a stable and optimal state of the
network. The authors present an implementation of their algorithm in
pseudo code, which is 83 lines long, distributed across four listings, and
enriched with network-specific aspects such as communication mes-
sage exchange; all these aspects make it highly non-trivial to under-
stand the correspondences to the game-theoretic formalization [12],
Section 5. In a simulation-based evaluation, the authors compare CTCA
with other state-of-the-art TC algorithms. Unfortunately, no details
about the simulation platform are given [12], Section 6. To the best of
our knowledge, no testbed evaluation of CTCA has been performed yet.

While the previous example considers only one of the many existing
TC algorithms, experience shows that it is (at least partly) representa-
tive. The example illustrates an obvious and prevalent gap between the
formal specification, which serves for proving important properties of
the algorithm, and the implementation, which serves for assessing the
TC algorithm. Due to this gap, it inherently remains unclear whether
the evaluated implementation of a TC algorithm fulfills the properties
that have been proved based on the specification.

This is especially true for the case where an incrementally working
TC algorithm is required. The transition from a batch TC algorithm,
which takes a complete topology as input and produces a modified
(optimized) complete topology as output, to an incremental version,
which takes an arbitrary set of topology (context) modifications as
input and produces a (minimal) set of topology adaptations as output,
is an error-prone process. Experience shows that it is extremely
challenging to cover all possible combinations of topology modifica-
tions in such a way that the computed topology adaptations never
violate the given set of topology constraints and optimization goals.
Contributions such as those by Zave show that even formalizations of
well-known network algorithms often reveal special cases where these
algorithms do not work properly [14,15]. For a more comprehensive
survey of the application of formal methods to networking algorithms,
we refer the reader to [16].

Towards a seamless construction process for TC algorithms. It is
the vision of our research activities as part of the collaborative research
center MAKI (Multi-Mechanism Adaptation for the Future Internet1)
to close the gap between a carefully crafted formal specification and its
derived implementation as follows. We propose a methodology for
constructing TC algorithms starting with a concise formal specification
and refining this specification step-by-step to an efficiently working
implementation. The resulting implementation is correct by construc-
tion if we can show that all refinement steps preserve the properties of
the initial specification. For this purpose, we adhere to a model-driven
engineering (MDE) [17] approach, which works as follows:

• Topologies are formalized as models that are proper instances of a
common meta-model that represents all relevant properties of the
considered class of topologies, e.g., link-weighted topologies.

• The meta-model of a studied topology class is extended with a set of
consistency constraints and optimization goals.

• Model transformation rules describe all relevant (context) modifica-

tions of a topology class and the expected constraint-preserving
topology adaptations of the constructed TC algorithm.

• Code generators translate the rule-based description of a TC
algorithm into an efficiently working implementation that can be
used in a software simulator or a hardware testbed for evaluation
purposes.

Directed or undirected graphs are commonly used to formalize the
structure of communication system topologies (e.g., [6,7,12,18]) and
TC algorithms are often sketched visually as sequences of topology
graph modifications (e.g., [19,20]). Therefore, graph transformation
(GT) constitutes a natural basis for developing our MDE methodology.
GT offers a set of rule-based and declarative techniques for the high-
level specification of model- or graph-manipulating algorithms with a
well-defined semantics [21,22]. A variety of GT-based tools are
available for formal specification and rapid prototyping purposes of
specified algorithms [23–28].

GT languages and tools are established representatives of the whole
class of visual languages (VL). As a consequence, our selected approach
adheres to the tradition of both the VL and the MDE community to
adopt visual modeling and programming languages for the high-level
description of the structure and behavior of communication systems
and, more generally, of distributed information systems. Today, UML
[29]—an assembly of a number of previously popular VLs (e.g., state
charts, message sequence charts, ROOM structure diagrams)—is a
well-established visual modeling language used for MDE activities in
the area of communication and distributed systems (e.g., [30–32]).
Languages like eMoflon [23] or MechatronicUML [33] even integrate
GT concepts for dynamic communication topology manipulation
purposes with UML-like activity, class, and composite structure dia-
grams as well as state charts. Apart from these languages, the VL
community has already been developing visual programming languages
with well-defined syntax and semantics for distributed communication
and information system construction purposes for several decades
(e.g., G-Net [34,35]). A comprehensive survey of related research
activities can be found in [36–38].

To summarize, the TC algorithm approach presented in this paper
relies on the subclass of GT-based visual languages and follows the
tradition of the formal program-construction-by-transformation ap-
proaches (see, e.g., [39]), which have their roots in research activities of
the 1970s like the Munich project CIP (computer-aided intuition-
guided programming) and are today part of the vision of model-driven
engineering activities [40].

Model constraints may be used for specifying required or forbidden
properties of models. Visual graph constraints have been introduced by
the GT community as a means to characterize classes of graphs in a
formal and declarative way [22,41,42]. For particular classes of graph
constraints, formal refinement algorithms have been proposed that
take a set of GT rules and graph constraints as input and produce a
refined set of GT rules that preserve the given constraints [42,41,43].
More precisely, this means that applying the refined GT rules will not
cause violations of the specified graph constraints.

A number of model-driven approaches for developing TC algo-
rithms have been proposed (e.g., [44,45,32,46,47]) that target two
major objectives: The first major objective is to reduce the complexity
of developing TC algorithms from the point of view of domain experts
by providing suitable (visual) abstractions, e.g., by using activity
diagram-like syntax to specify the control flow of a TC algorithm. The
second major objective is to simplify the testing and debugging by
implementing the TC algorithm against a middleware layer, which
enables that the exact same algorithm may be exercised inside a
software simulation and a hardware testbed environment. However, to
the best of our knowledge, none of these approaches focuses on
integrating consistency properties constructively into the development
process of TC algorithms. Instead, the proposed approaches focus on
facilitating formal analysis, debugging, automated code generation, or

1 In German: Multi-Mechanismen-Adaption für das künftige Internet, http://www.
maki.tu-darmstadt.de

R. Kluge et al. Journal of Visual Languages and Computing 38 (2017) 47–83

48



Download English Version:

https://daneshyari.com/en/article/4968189

Download Persian Version:

https://daneshyari.com/article/4968189

Daneshyari.com

https://daneshyari.com/en/article/4968189
https://daneshyari.com/article/4968189
https://daneshyari.com

