
Contents lists available at ScienceDirect

Journal of Visual Languages and Computing

journal homepage: www.elsevier.com/locate/jvlc

Resource-aware policies☆

Paolo Bottonia,⁎, Andrew Fishb,⁎⁎, Alexander Heußnerc,⁎⁎, Francesco Parisi Presiccea

a Dipartimento di Informatica, “Sapienza” Università di Roma, Italy
b School of Computing, Engineering and Mathematics, University of Brighton, UK
c Otto-Friedrich-Universität Bamberg, Germany

A R T I C L E I N F O

Keywords:
Annotations
Resources
Modelling spider diagrams
Synchronisation
Conformance
Policies

A B S T R A C T

In previous papers, we proposed an extension of Spider Diagrams to object-oriented modelling, called
Modelling Spider Diagrams (MSDs), as a visual notation for specifying admissible states of instances of types,
and for verifying the conformance of configurations of instances with such specifications. Based on this
formalisation, we developed a notion of transformation of MSDs, modelling admissible evolutions of
configurations. In the original version of MSD, individual instances evolve independently, but in reality
evolutions often occur in the context of available resources, so transformations must be extended to take this
into account. In this paper we provide an abstract syntax for MSDs, in terms of typed attributed graphs, and a
semantics for the specification of policies based on notions from the theory of graph transformations, and we
associate with them a notion of resources. We also introduce a synchronisation mechanism, based on
annotation of instances with resources, so that the transformations required by a policy occur with respect to
available resources. In particular, resources can be atomically produced or consumed or can change their state
consistently with the evolution of the spiders subject to the policy.

1. Introduction

In the context of requirements engineering, the expression and
understanding of policy specifications by various, possibly non-techni-
cal, stakeholders, may be favoured by the adoption of diagrammatic,
intuitive representations. In [1] we presented a framework for expres-
sing temporal policies that restrict admissible evolutions of the state of
instances of types, based on an underlying extension of Spider
Diagrams for representing types or their instances. In this framework,
in contrast to classical Spider Diagrams, curves represent admissible
states, and additional temporal information is provided by suitable
annotations of the graphical elements. A temporal policy then specifies
over which periods an instance of a given type can be in some given
state. However, these extensions may not be sufficient in practice, if the
evolution of an instance, hence the viability of a policy, depends
essentially on the (un-)availability of some resource.

We use, as running examples, a number of scenarios derived from
actual parking policies, along the lines of the examples that we have

used as testbed for our definition of policies [1,2] and which permit a
number of variations.

Running Example. The Fiumicino airport in Rome has recently put
in place a policy to constrain the time during which a private car
collecting passengers can stay in the arrival area. The car's registration
plate is photographed when entering the area. If the car does not leave
within 15 min, a fine will be issued to the owner. To avoid this penalty,
the owner can: (a) park in a special ‘free parking’ zone, where the car is
allowed to park for 15 min. (2) leave the restricted area, or (3) enter a
‘toll parking’ zone, where the car can stay indefinitely (actually, no
longer than 24 h). When entering a parking zone, the owner must
collect a ticket while the plate is photographed again, and the car is
recognised to have left the area when the ticket associated with that
plate is discharged at the exit. If the car stays in the free parking zone
for more than 15 min, a fee must be paid, and registered on the ticket,
otherwise the car will be subject to a fine when it is recognised as
leaving the arrival area. In either case, if the duration of the stay
exceeds the time that has been paid for, a fine will be issued. No car will

http://dx.doi.org/10.1016/j.jvlc.2016.10.004
Received 1 December 2015; Received in revised form 27 May 2016; Accepted 19 October 2016

☆We are happy to contribute to an homage to S.-K.Chang celebrating his achievements in the foundation and conduction of the Journal of Visual Languages and Computing, for many
years together with the late Stefano Levialdi, and in the establishing the whole area of research of Visual Languages. This work brings together two areas of research,
diagrammatic reasoning and graph transformations, which, although never directly investigated by S.-K., fit very well with his vision that “cooperative and interdisciplinary research
can lead to a better understanding of the visual communication process for developing an effective methodology to design the next generation of visual languages” (from the preface to
the groundbreaking 1986 volume on Visual Languages curated by him). Thanks, S.-K., for starting the field!

⁎ Corresponding author.
⁎⁎ Corresponding authors.
E-mail addresses: bottoni@di.uniroma1.it (P. Bottoni), Andrew.Fish@brighton.ac.uk (A. Fish), alexander.heussner@uni-bamberg.de (A. Heußner).

Journal of Visual Languages and Computing 38 (2017) 84–96

Available online 20 October 2016
1045-926X/ © 2016 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/1045926X
http://www.elsevier.com/locate/jvlc
http://dx.doi.org/10.1016/j.jvlc.2016.10.004
http://dx.doi.org/10.1016/j.jvlc.2016.10.004
http://dx.doi.org/10.1016/j.jvlc.2016.10.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2016.10.004&domain=pdf

be admitted to any parking zone which does not offer available parking
spaces, so that the possibility for a car to comply with the policy by
staying in a parking place is ultimately subject to the availability of the
space. Buses can only load and discharge in suitable spaces, while taxis
have to enter a reserved area. Payment can be performed in different
ways, e.g. cash, credit card, company subscriptions, or through a
mobile application.

We do not consider here the timing aspect, as it has been
extensively treated in [1], but we focus on two important features of
policy modelling:

(1) A policy (implicitly or explicitly) defines admissible sequences of
operations or states. For example, a car having enjoyed a free
parking period must either leave the area or buy some time before
leaving the area anyway. A car cannot enjoy a free parking period
after paying a ticket unless it exits and re-enters the controlled
area.

(2) In order to comply with a policy, resources of some kind must be
available. For example if the driver wants to buy some parking time
he or she must have some paying instrument available, and the
airport system must provide suitable devices to collect the pay-
ment, e.g. parking meters, or connection with the application
database. On the parking side, a car which cannot find a parking
space, of any type, must necessarily leave the controlled area. The
state of these resources change either as a consequence of an
action executed by some car following the policy, e.g. a parking
place is occupied or abandoned by a car, or for independent
reasons, e.g. a set of parking places is excluded from usage due to
roadworks or security reasons on special occasions.Running

Example (Contd.). Parking regulations in the City of Rome distinguish
between three types of public parking places alongside streets:
completely free places, short-term free parking places, and toll parking
places where parking time must be paid in advance. Short-term parking
places cannot be continually occupied by the same car for more than
three hours, and no extra time can be bought for these places, but the
car can leave the place and reoccupy it, placing an indication of the
time at which the new occupation starts. Compliance to this policy is
not controlled by automatic means but inspectors can check it at any
time (looking for cars which have overstayed their free or paid period).
In order for this policy not to be repelled by courts, as appellants can
lament the lack of free spaces, the city council must guarantee that in
each neighbourhood a certain ratio of (completely or short-term) free
to toll places is respected.

We use this example as an indication of the fact that policies may
have conditions of validity, out of which they cannot be enforced.
These conditions may refer to availability of resources, as well as to
specific events which activate them or not. We also remark that policies
apply to well-defined types of elements, e.g. ambulances, police, or
firefighter cars are not subject to parking restrictions, and that
individual instances start being subjected to a policy only when some
trigger event occurs, e.g. a car enters the Fiumicino controlled area.

Running Example (contd.). Garages of commercial malls offer free
parking to all customers, but customers may have to provide evidence
of a purchase at the mall (upon leaving) to qualify for the use of the free
parking. Internally, the mall can reserve spaces closer to the shopping
area for pregnant women or families with children, as well as for
disabled people, all states which can be easily demonstrated. Multi-
storey car parks can reserve different areas for long vehicles and for
rental cars, and they do not admit methane-propelled cars in covered
zones. In all these cases, availability of a resource is constrained by
some property of the car (or of its owner), or some combination of
properties. Other similar cases include private car-parks which can
only be entered by customers who possess a parking permit or
membership card.

The above are cases where access conditions may differ for elements

with specific properties (which can be assessed before or after using the
resource). Conformance to a policy may then depend on such proper-
ties and on synchronisation of the changes in state dictated by the
policy with changes in the availability of multiple resources at the same
time.

The formal model for resource-aware policies presented here
extends our previous policy framework along two directions: On the
one hand, we provide a more general notion of policy in Section 2, of
which temporal policies are a special case. On the other hand, after
introducing our notion of resources in Section 3, we consider, in
Section 4, how (un-)availability of resources affects conformance to a
policy. Discussion of related work is postponed until Section 5, after
which Section 6 concludes the paper.

Three recent lines of research concur in this work: (1) the extension
of Spider Diagrams to the world of OO modelling, in particular through
the definition of policies; (2) the definition of an abstract representa-
tion of Spider Diagrams in terms of Spider Graphs [3], from which we
derive a formal notion of conformance of an instance to a policy; (3)
the notion of annotation as a flexible way for connecting different
domains. In addition, we introduce a generic notion of resource and
consequently enrich the notion of policy. We use annotations to relate
elements of the domain for which the policy is defined with resources
needed for being conformant to the policy, as expressed by global
constraints. We define a process of synchronisation between elements
and resources in transformations which ensures conformity to the
policy.

In particular, we adopt a simplified version of the notion of Spider
Graphs, which we have developed to set the logical formalism of Spider
Diagrams within the framework of attributed typed graphs and we
provide a number of constructs for expressing and reasoning on
policies. We introduce an original notion of synchronisation of
elements subject to a policy with the needed resources, via the
annotation mechanisms presented in [4]. In the resulting setting,
systems, modelled as Spider Graphs, can evolve according to a policy
under constraints represented by resource availability, while consider-
ing resource evolution only in the context of system evolution.
Annotations are used both in the representation of constraints and in
the construction of synchronised rules, modelling the concurrent
evolution of systems and resources. System evolution is modelled
through transformation rules ensuring conformity with a policy. Rules
can be derived from the policy specification following a procedure
described in [2].

The idea of constraining transformations on resources presented in
Section 4 is general and could be used in any domain in which policies
determine admissible transitions. We point the reader to [3] for
detailed motivations for the use of Modelling Spider Diagrams, and
on the introduction of Spider Graphs.

2. Formal setting: modelling spider diagrams, graphs and
policies

Graphs and typed graphs. Following [5], a graph is a tuple
V E s t(, , ,), with V and E finite sets of nodes and edges, and functions

s E V: → , t E V: → mapping an edge to its source and target. A graph
morphism m G H: → is given by a pair of functions m V V: →V G H and
m E E: →E G H preserving sources and targets of edges. Morphism
composition is denoted by ○, where m m○1 2 indicates that m1 is applied
to the result of the application of m2.

A graph transformation rule is a span of graph morphisms

L K R← →
l r

, and is applied following the Double Pushout (DPO)
Approach. Fig. 1 (left) shows a DPO direct derivation diagram.
Square (1) is a pushout (i.e. G is the union of L and D through their
common elements in K), modelling the deletion of the elements of L
not in K , while pushout (2) adds to D the new elements, i.e. those
present in R but not in K , to obtain H as the result of the rule

P. Bottoni et al. Journal of Visual Languages and Computing 38 (2017) 84–96

85

Download English Version:

https://daneshyari.com/en/article/4968190

Download Persian Version:

https://daneshyari.com/article/4968190

Daneshyari.com

https://daneshyari.com/en/article/4968190
https://daneshyari.com/article/4968190
https://daneshyari.com

