
An autonomous GP-based system for regression and classification problems

Mihai Oltean *, Laura Dioşan

Department of Computer Science, Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania

1. Introduction

Autonomous systems [5] are of high interest due to their ability
to perform various tasks without relying on human interference. A
computer program is autonomous if the user does not have to
change its parameters when a new problem has to be solved. For
achieving this goal the following features must be implemented:

� The ability to perform well under significant uncertainties in the
system and environment for extended periods of time.
� The ability to recognize if it knows how to solve a problem or

not.
� The ability to create new solutions for new problems.
� The ability to learn from previous experience.
� The ability to use the computer resources in a efficient

manner.
� The ability to identify failure conditions.
� The ability to improve the existing solutions during the idle-

time.

The purpose of this research is to build a system meeting the
previously described criteria. We have limited our attention to
symbolic regression and classification problems due to several
reasons:

� These problems are of great interest because they arise in many
real-world applications.
� The input and output has a well-defined structure, which is easy

to handle: arrays of symbols.

Our system, called Genetic Programming-Autonomous Solver
(GP-AS) consists of six main parts: a Decision Maker, a Trainer, a
Solver Repository, a Repository Manager, an Idle-time Manager
and a Failure Manager. When a problem is presented to the
system, the Decision Maker will decide which Solver will try to
solve that problem by sending a request to the Repository
Manager which in turn will query its database. If no suitable Solver
is found, the Decision Maker will activate the Trainer, which will
try to train a Solver for that problem. This new Solver will be added
to the Repository for later use. The training of new Solvers is
performed by using examples which are requested from the user.
When no request is sent to the system it will try to improve the
existing solutions by calling Idle-time Manager. Another compo-
nent is able to detect possible failure of the systems and to act
accordingly.

Applied Soft Computing 9 (2009) 49–60

A R T I C L E I N F O

Article history:

Received 14 November 2006

Received in revised form 27 February 2008

Accepted 11 March 2008

Available online 20 March 2008

PACS:

01.30. �y

Keywords:

Genetic Programming

Adaptive strategies

Autonomous systems

Symbolic regression

Classification

A B S T R A C T

The aim of this research is to develop an autonomous system for solving data analysis problems. The

system, called Genetic Programming-Autonomous Solver (GP-AS) contains most of the features required

by an autonomous software: it decides if it knows or not how to solve a particular problem, it can

construct solutions for new problems, it can store the created solutions for later use, it can improve the

existing solutions in the idle-time it can efficiently manage the computer resources for fast running speed

and it can detect and handle failure cases. The generator of solutions for new problems is based on an

adaptive variant of Genetic Programming. We have tested this part by solving some well-known

problems in the field of symbolic regression and classification. Numerical experiments show that the GP-

AS system is able to perform very well on the considered test problems being able to successfully

compete with standard GP having manually set parameters.

� 2008 Elsevier B.V. All rights reserved.

* Corresponding author.

E-mail addresses: moltean@cs.ubbcluj.ro (M. Oltean), lauras@cs.ubbcluj.ro

(L. Dioşan).

Contents l is ts ava i lab le at ScienceDirec t

Applied Soft Computing

journal homepage: www.elsev ier .com/ locate /asoc

1568-4946/$ – see front matter � 2008 Elsevier B.V. All rights reserved.

doi:10.1016/j.asoc.2008.03.008

mailto:moltean@cs.ubbcluj.ro
mailto:lauras@cs.ubbcluj.ro
http://www.sciencedirect.com/science/journal/15684946
http://dx.doi.org/10.1016/j.asoc.2008.03.008


The Trainer has been used for solving several interesting and
difficult problems: even-parity and other 22 real-world problem
taken from PROBEN1 [41].

It is difficult to compare the GP-AS system with some other
problem solvers because the experimental conditions are different.
Comparisons between GP and other techniques have been
previously performed by other authors [10,17]. Here we have
performed a raw comparison for the numerical experiments
required to evolve Solvers. The results obtained by GP-AS are
generally worse then those obtained by the systems that use a
fixed population size and a fixed maximal tree height. There are
still few cases where GP-AS Trainer performs better than standard
GP. However, the comparison is not fair because experimental
conditions are different. The GP-AS system uses an adaptive
mechanism for population size and chromosome size and this
means that it does not know which are the optimal values of these
parameters for a given problem. This is different from other
systems where several experimental trials have been performed in
order to find this information.

The paper is organized as follows: related work is reviewed in
Section 2. The extension of Genetic Programming, used for
training Solvers, is described in Section 3. The way in which
multiple outputs can be easily handled by GP is minutely
discussed in Section 3.2. Fitness assignment in the case of
regression (classification) problems is described in Sections
3.3.1 and 3.3.2. The proposed GP-AS system is presented
in Section 4. The structure of the input required by the
GP-AS system is thoroughly discussed in Section 4.1. Decision
Maker is unveiled in Section 4.2. The Trainer and its underlying
algorithm are presented in Section 4.3. The Idle-time and
Failure Managers are described in Sections 4.6 and 4.7.
Several numerical experiments used for solving problems are
performed in Section 5 where we also discuss their results.
Conclusions and future research directions are outlined in
Section 6.

2. Related work

Developing automated problem solvers is one of the central
themes of mathematics and computer science.

The source of inspiration in most of these approaches was the
nature and the human brain. In this section, we will make a brief
review of existing work in the field of general problem solvers and
adaptive techniques.

2.1. Evolutionary adaptive models

The main engine of our system is based on an adaptive GP
mechanism. This is why we start by reviewing some relevant work
in this field.

In the early stages, evolutionary algorithms have been seen as
problems solvers that exhibit the same performance over a wide
range of problem without too much user interference [19,23]. The
modern view say that there is no guarantee that an algorithm
(having the same parameter settings) will perform similarly well
on multiple problems [19,53]. This is why many techniques for
adapting the parameters were proposed.

According to [3], adaptive evolutionary computations are
distinguished by their dynamic manipulation of selected
parameters or operators during the course of evolving a problem
solution. Adaptive ECs have an advantage over standard ECs
in that they are more reactive to the unanticipated particulars
of the problem and, in some formulations, can dynamically
acquire information about regularities in the problem and
exploit them.

Mainly, there are two taxonomy schemes [3,19] which
group adaptive computations into distinct classes—distinguish-
ing by the type of adaptation (i.e., how the parameter is
changed), and by the level of adaptation (i.e., where the changes
occur).

In [3] the adaptive evolutionary computations have been
divided into algorithms with absolute update rules (which
compute a predetermined function over a set of generations or
populations and use the changes in this heuristic to determine
when and how to modify the algorithm’s adaptive parameters) and
empirical update rules (which use the same variation and selection
process of evolving the problem solutions to also modify the
adaptive parameters).

Both classes of adaptive evolutionary algorithms can be further
subdivided based on the level the adaptive parameters operate on.
Angeline distinguished between population, individual, and
component-level adaptive parameters [3].

The classification scheme of Eiben et al. [19] has extended
and broaden the concepts introduced by Angeline in [3].
Adaptation schemes are again classified firstly by the type of
adaptation and secondly – as in [3]– by the level of adaptation.
Considering the different levels of adaptation, a fourth level,
environment level adaptation was introduced in order to
take into account the cases where the responses of the
environment are not static. Concerning the adaptation type,
in [19] the algorithms are first divided into static (i.e., no
changes of the parameters occur) and dynamic algorithms.
Based on the mechanism of adaptation three subclasses are
distinguished: deterministic, adaptive, and finally self-adaptive
algorithms. The latter comprise the same class of algorithms as
in [3].

The first proposals to adjust the control parameters of a
computation automatically date back to the early days of
evolutionary computation. In 1967, Reed et al. [43] have
experimented with the evolution of probabilistic strategies playing
a simplified poker game. Also in 1967, Rosenberg [45] has
proposed to adapt crossover probabilities. Concerning genetic
algorithms, Bagley [8] has considered incorporating the control
parameters into the representation of an individual. Although
Bagley’s suggestion is one of the earliest proposals of applying
classical self-adaptive methods, self-adaptation as usually used in
ES appeared relatively late in genetic algorithms. In 1987, Schaffer
and Morishima [47] introduced the self-adaptive punctuated
crossover adapting the number and location of crossover points.
Some years later, a first method to self-adapt the mutation
operator was suggested by Back [7,6]. He has proposed a self-
adaptive mutation rate in genetic algorithms similar to evolution
strategies.

Some previous studies have investigated adaptive and self-
adaptive representations in genetic programs. The adaptive
representation genetic program [44] is a population-level adaptive
genetic program that uses statistics gathered over all sub-trees
occurring in the population to determine more advantageous
crossover points and preserve high-fitness sub-trees. The genetic
library builder (GLiB) [1,2] is an individual-level self-adaptive
genetic program that co-evolves a hierarchical representation for
each individual in the population.

Automatically defined functions (ADFs) [28] is an individual-
level self-adaptive genetic program where each individual
adapts its definitions for a predetermined set of subroutines.
Koza and Andre [29] have extended this method to allow the
number and interface of an individual’s subroutines to adapt as
well. Teller [52] has investigated a self-adaptive crossover
scheme for a variant of genetic programming and Iba and de
Garis [26] has described an adaptive crossover operation that

M. Oltean, L. Dioşan / Applied Soft Computing 9 (2009) 49–6050



Download English Version:

https://daneshyari.com/en/article/496828

Download Persian Version:

https://daneshyari.com/article/496828

Daneshyari.com

https://daneshyari.com/en/article/496828
https://daneshyari.com/article/496828
https://daneshyari.com

