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1. Introduction

Nonlinear system control is becoming an important tool, which
can be used to improve control performance and achieve robust
fault-tolerant behavior. Among the different nonlinear control
techniques, methods based on artificial neural network (ANN) have
been grown into a popular research topic in recent years [1–3]. The
reason is that the classical control theory usually requires a
mathematical model for designing the controller. The inaccuracy
of mathematical modeling of the plants usually degrades the
performance of the controller, especially for nonlinear and complex
control problems [4]. ANN modeling has been admitted as a
powerful tool, which can facilitate the effective development of
models by combining information from different sources, such as
data, records. However, the ANN lacks a systematic way to
determine the appropriate model structure, has no localizability,
and converges slowly. A suitable approach to overcoming the
disadvantages of global approximation networks is the substitution
of the global activation function with localized basis functions. In
this type of local network, only a small subset of the network
parameters is engaged at each point in the input space. The network
transparency may be improved by adopting the wavelet decom-
position technique from the field of adaptive signal processing. Due
to the local properties of wavelets, arbitrary functions can be
approximated by the truncated discrete wavelet transform.

Recently, many researches proposed wavelet neural networks for
identification and control [5–14]. Ikonomopoulos and Endou [9]
proposed the analytical ability of the discrete wavelet decomposi-
tion with the computational power of radial basis function
networks. Members of a wavelet family were chosen through a
statistical selection criterion that constructs the structure of the
network. Ho et al. [10] used the orthogonal least squares (OLS)
algorithm to purify the wavelets from their candidates, which
avoided using more wavelets than required and often resulted in an
overfitting of the data and a poor situation in ref. [6]. Lin et al. [11]
proposed a wavelet neural network to control the moving table of a
linear ultrasonic motor (LUSM) drive system. They chose an
initialization for the mother wavelet based on the input domains
defined by the examples of the training sequence. Huang and Huang
[12] proposed an evolutionary algorithm for optimally adjusted
wavelet networks. However, the selections of wavelet bases were
based on practical experience or trial-and-error tests.

To steady control the nonlinear systems, a self-constructing
wavelet network (SCWN) controller is proposed in this paper. It is a
four-layered network structure, which is comprised of an input
layer, wavelet layer, product layer, and output layer. We adopt the
orthogonal wavelet functions as its node functions. Based on the
self-learning ability, the on-line structure/parameter learning
algorithm is performed concurrently in the SCWN controller. In
the structure learning scheme, the degree measure method is used
to find the proper wavelet bases and to minimize the number of
wavelet bases generated from input space. In parameter learning
scheme, the supervised gradient descent method is applied to
adjust the shape of wavelet functions and the connection weights
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This paper describes a self-constructing wavelet network (SCWN) controller for nonlinear systems

control. The proposed SCWN controller has a four-layer structure. We adopt the orthogonal wavelet

functions as its node functions. An online learning algorithm, structure learning and parameter learning,

allows the dynamic determining of the number of wavelet bases, and adjusting the shape of the wavelet

bases and the connection weights. The SCWN controller is a highly autonomous system. Initially, there

are no hidden nodes. They are created and begin to grow as learning proceeds. Computer simulations

have been conducted to illustrate the performance and applicability of the proposed learning scheme.
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in SCWN controller. To a great extent, the learning quality of a
network is related to the parameters of feedback error. The SCWN
controller based on feedback error learning strategy has favorable
control performance. Finally, the proposed SCWN controller is
applied to two nonlinear control problems: control for backing up
the truck, and control of water bath temperature system. The
proposed SCWN model has the following advantages: (1) this
study adopts the wavelet network to control nonlinear systems.
The local properties of wavelets in the SCWN model enable
arbitrary functions to be approximated more effectively. (2) We
use an online learning algorithm to automatically construct the
SCWN model. No nodes or wavelet bases exist initially. They are
created automatically as learning proceeds, as online incoming
training data are received and as structure and parameter learning
are performed. The structure learning adopts partition-based
clustering techniques to perform cluster analysis in a data set. The
parameter learning, based on the gradient descent method, can
adjust the wavelet functions and the corresponding weights of the
SCWN. (3) As demonstrated in Section 4, the SCWN model is
characterized by small network size and fast learning speed.

2. Structure of the SCWN controller

The structure of the SCWN controller is shown in Fig. 1. The
proposed SCWN controller is designed as a four-layer structure,
which is comprised of an input layer, wavelet layer, product layer,
and output layer.

The input data in the input layer of the network is x = [x1, x2, . . .,
xi, . . ., xn]T, where T is the transpose and n is the number of
dimensions. Noted that in ordinary wavelet neural network model
applications, it is often useful to normalize the input vectors x into
the interval [0,1]. Then, the activation functions of the wavelet
nodes in the wavelet layer are derived from the mother wavelet
f(x), with a dilation of d and a translation of t [6]:

fd:tðxÞ ¼ 2d=2fð2dx� tÞ (1)

The mother wavelet is selected so that it constitutes an
orthonormal basis in L2ðRnÞ. The derivation of a differentiable
Mexican-hat function is adopted as a mother wavelet herein,

fðxÞ ¼ ð1� jjxjj2Þ e�jjxjj
2=2; (2)

where jjxjj2 = xTx. Therefore, the activation function of the jth
wavelet node connected with the ith input data is represented as:

fd jt j
ðxiÞ ¼ 2di j=2ð1� jj2di j xi � ti jjj2Þ e�jj2

di j xi�ti j jj2=2;

i ¼ 1; . . . ;n; j ¼ 1; . . . ;m;
(3)

where n is the number of input-dimensions and m is the number of
the wavelets. The wavelet functions of (3) with various dilations
and translations are presented in Fig. 2. Then, each wavelet in the
product layer is labeled P, i.e., the product of the jth multi-
dimensional wavelet with n input dimensions x = [x1, x2, . . ., xi, . . .,
xn]T can be defined as

c jðxÞ ¼
Yn

i¼1

fd jt j
ðxiÞ: (4)

According to the theory of multi-resolution analysis (MRA) [10,13],
any f 2 L2(R) can be regarded as a linear combination of wavelets at
different resolution levels. For this reason, the function f is
expressed as

YðxÞ ¼ f ðxÞ �
Xm
j¼1

w jc jðxÞ (5)

If cj = [c1, c2, . . ., cm] is used as a nonlinear transformation
function of hidden nodes and weight vectors and w j ¼
w1;w2; . . . ;wm defines the connection weights, then Eq. (5) can
be considered the functional expression of the SCWN modeling
function Y.

3. A self-constructing learning algorithm

In this section, the degree measure method and the well-known
back propagation (BP) algorithm are used concurrently for
constructing and adjusting the SCWN controller. The degree
measure method is used to decide the number of wavelet bases in
the wavelet layer and the product layer. On the other hand, the BP
algorithm is used to adjust the parameters of the wavelet bases and
connection weights. The details of the algorithm are presented
below. Finally in this section, the stability analysis of the SCWN
model based on the Lyapunov approach is performed the
convergence property.

3.1. The structure learning scheme

Initially, there are no wavelet bases in the SCWN controller. The
first task is to decide when a new wavelet base is generated. We
adopt partition-based clustering techniques to perform cluster
analysis in a data set. For each incoming pattern xi, the firing
strength of a wavelet base can be regarded as the degree of the
incoming pattern belonging to the corresponding wavelet base. An
input datum xi with a higher firing strength means that its spatial
location is nearer to the center of the wavelet base tj than those
with smaller firing strength. Based on this concept, the firing
strength obtained from Eq. (4) in the product layer can be used as
the degree measure

F j ¼ jc jj; j ¼ 1; . . . ;q; (6)

where q is the number of existing wavelet bases and jcjj is the
absolute value of cj. According to the degree measure, the criterion
of a new wavelet base generated for new incoming data is
described as follows:

Find the maximum degree Fmax

Fmax ¼ max
1� j�q

F j (7)

If Fmax � F̄, then a new wavelet base is generated, where F̄ is a pre-
specified threshold that should decay during the learning process,
limiting the size of the SCWN model.

Fig. 1. The architecture of the SCWN controller.
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