
Parallel Computing 58 (2016) 140–156

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

An asynchronous traversal engine for graph-based rich

metadata management

Dong Dai a , Philip Carns b , Robert B. Ross b , John Jenkins b , Nicholas Muirhead

a ,
Yong Chen

a , ∗

a Computer Science Department, Texas Tech University, United States
b Mathematics and Computer Science Division, Argonne National Laboratory, United States

a r t i c l e i n f o

Article history:

Received 5 December 2015

Revised 14 May 2016

Accepted 16 June 2016

Available online 23 June 2016

Keywords:

Parallel file systems

Rich metadata management

Property graph

Graph traversal

Graph partitioning

a b s t r a c t

Rich metadata in high-performance computing (HPC) systems contains extended informa-

tion about users, jobs, data files, and their relationships. Property graphs are a promis-

ing data model to represent heterogeneous rich metadata flexibly. Specifically, a property

graph can use vertices to represent different entities and edges to record the relationships

between vertices with unique annotations. The high-volume HPC use case, with millions

of entities and relationships, naturally requires an out-of-core distributed property graph

database, which must support live updates (to ingest production information in real time),

low-latency point queries (for frequent metadata operations such as permission checking),

and large-scale traversals (for provenance data mining).

Among these needs, large-scale property graph traversals are particularly challenging

for distributed graph storage systems. Most existing graph systems implement a “level-

synchronous” breadth-first search algorithm that relies on global synchronization in each

traversal step. This performs well in many problem domains; but a rich metadata manage-

ment system is characterized by imbalanced graphs, long traversal lengths, and concurrent

workloads, each of which has the potential to introduce or exacerbate stragglers (i.e., ab-

normally slow steps or servers in a graph traversal) that lead to low overall throughput for

synchronous traversal algorithms. Previous research indicated that the straggler problem

can be mitigated by using asynchronous traversal algorithms, and many graph-processing

frameworks have successfully demonstrated this approach. Such systems require the graph

to be loaded into a separate batch-processing framework instead of being iteratively ac-

cessed, however.

In this work, we investigate a general asynchronous graph traversal engine that can op-

erate atop a rich metadata graph in its native format. We outline a traversal-aware query

language and key optimizations (traversal-affiliate caching and execution merging) neces-

sary for efficient performance. We further explore the effect of different graph partitioning

strategies on the traversal performance for both synchronous and asynchronous traversal

engines. Our experiments show that the asynchronous graph traversal engine is more effi-

cient than its synchronous counterpart in the case of HPC rich metadata processing, where

more servers are involved and larger traversals are needed. Moreover, the asynchronous

traversal engine is more adaptive to different graph partitioning strategies.

© 2016 Elsevier B.V. All rights reserved.

∗ Corresponding author.

E-mail address: yong.chen@ttu.edu (Y. Chen).

http://dx.doi.org/10.1016/j.parco.2016.06.002

0167-8191/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.parco.2016.06.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/parco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2016.06.002&domain=pdf
mailto:yong.chen@ttu.edu
http://dx.doi.org/10.1016/j.parco.2016.06.002

D. Dai et al. / Parallel Computing 58 (2016) 140–156 141

1. Introduction

A high-performance computing (HPC) platform commonly generates huge amounts of metadata about different entities

including jobs, users, files, and their relationships. Traditional metadata, which describes the predefined attributes of these

entities (e.g., file size, name, and permissions), has been well recorded and used in current systems. Rich metadata, which

describes the detailed information about entities and their relationships, extends traditional metadata to an in-depth level

and can contain arbitrary user-defined attributes. A typical example of rich metadata is provenance or lineage, which main-

tains a complete history of a dataset, including the processes that generated it, the user who started the processes, and

even the environment variables, parameters, and configuration files used during execution [1] . Property graphs, which are

an extension of traditional graphs with property annotations on vertices and edges, are a promising data model for rich

metadata management in HPC systems because of their ability to represent not only metadata attributes but also the re-

lationships between them. Distributed property graph databases such as Neo4j [2] , DEX [3] , OrientDB [4] , G-Store [5] , and

Titan [6] have been developed to assist in managing large property graphs.

We are developing a rich metadata management system based on the new concept of unifying metadata into one generic

property graph [1] . In addition to storing the property graphs, a major requirement in the rich metadata use case is to

effectively answer graph traversal queries from metadata management utilities, such as provenance queries, hierarchical data

traversal, and user audit. Graph traversal usually serves as the basic building block for various algorithms and queries. In fact,

it is so fundamental that traversal of simple graphs 1 has been used as a benchmark metric (Graph500) for measuring the

performance of supercomputers [7,8] . Traversal for property graphs is likewise critical and needs efficient implementation.

Typically, the core execution engine of graph traversal is implemented by following the general structure of the par-

allel “level-synchronous” breadth-first search (BFS) algorithm, dating back three decades [9,10] . Given a graph G , level-

synchronous BFS systematically explores G from a source vertex s level by level. The level is the distance or hops it travels.

BFS implies that all the vertices at level k from vertex s should be “visited” before vertices at level k + 1 ; hence, global

synchronization is needed at the end of each traversal step. The “level-synchronous” breadth-first search structure has been

adopted not only in graph databases but also in many distributed graph-processing frameworks, including Pregel [11] , Gi-

raph [12] , and GraphX [13] . The Bulk Synchronous Parallel (BSP) model is popular in this context because of its simplicity

and performance benefits under balanced workload.

However, such global synchronization could cause serious performance problems in our property graph-based metadata

management case for several reasons. First, as an on-line database system, our system allows concurrent graph traversals

for different management tasks. The interferences among traversals easily create stragglers [14,15] , which can cause poor

resource utilization and significant idling during global synchronization. Second, the imbalance of the graph partitions, along

with the possible variations in attribute sizes among different vertices and edges, leads to highly uneven loads on different

servers (an indication of stragglers) while traversing. The wide existence of small-world graphs in HPC metadata (e.g., degree

of vertices follows the power-law distribution [1,16]) makes this problem even worse. Third, in HPC metadata property

graphs, possible graph traversal steps could be much larger than the graph diameter, which traditionally limits the maximal

traversal steps in simple graphs. For example, the six degrees of separation theory exists in social networks [17] . Specifically,

in our use case, different attributes of the same vertex or edge can be used in different steps. Longer traversals introduce

more synchronizations and lead to a higher chance of performance penalty caused by stragglers.

Previous work indicated that asynchronous approaches have the potential to minimize the effects of load imbalance

across different cores in multicore machines [18] . GraphLab [19] , PowerGraph [20] , and other distributed frameworks

[21,22] have investigated the use of asynchronous execution models, which could implement the traversal operations in

general. However, these approaches are more suitable for the distributed, batch-oriented graph computation that runs on

the entire graph, instead of interactive traversal and query of subgraphs, which are common in our HPC-rich metadata

management system.

In this research, we explore the design and implementation of an asynchronous traversal engine. We propose optimiza-

tions, including traversal-affiliate caching and execution merging , to fully exploit the performance advantage of the asyn-

chronous traversal engine. In addition, we explore the effect of different graph-partitioning strategies on graph traversal

engines to show the advantage of the asynchronous engine. Also proposed is a general traversal language to describe di-

verse patterns of property graph-based rich metadata management. We show that the asynchronous engine can support this

language with detailed progress report functionality comparable to that of a synchronous engine. The main contributions of

this work are fourfold.

• Analysis and summary of the graph traversal patterns in property graph databases for HPC rich metadata management.

Based on these patterns, we propose a graph traversal language to support them.

• Design and implementation of an asynchronous distributed traversal engine. Critical optimizations are also proposed for

the asynchronous traversal engine: traversal-affiliate caching and execution merging to improve the performance.

• Analysis of the effects of vertex-cut vs. edge-cut graph partitioning on graph traversal.

• Evaluation and demonstration of the performance benefits compared with synchronous traversal engine on both syn-

thetic graphs and real-world graphs, as well as under different graph-partitioning strategies.

1 The simple graph indicates a graph defined as a set of nodes connected by weighted edges in this study.

Download English Version:

https://daneshyari.com/en/article/4968313

Download Persian Version:

https://daneshyari.com/article/4968313

Daneshyari.com

https://daneshyari.com/en/article/4968313
https://daneshyari.com/article/4968313
https://daneshyari.com

