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a b s t r a c t

In this paper, I propose a re-weighted moving horizon estimation (RMHE) to improve the robustness for
power systems. The RMHE reduces its sensitivity to the outliers by updating their error variances real-
time and re-weighting their contributions adaptively for robust power system state estimation (PSSE).
Compared with the common robust state estimators such as the Quadratic-Constant (QC), Quadratic-
Linear (QL), Square-Root (SR), Multiple-Segment (MS) and Least Absolute Value (LAV) estimator, one
advance of RMHE is that the RMHE incorporates the uncertainty of process model and the arrival cost
term during the optimization process. Constraints on states are also taken into account. The influence of
the outliers can be further mitigated. Simulations on the IEEE 14-bus system show that the RMHE can
obtain estimated results with smaller errors even when the outliers are present.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The most common assumption of measurement noise used in
power system state estimation (PSSE) is Gaussian. However, the
Gaussian noise assumption is only an approximation to reality [1].
When the system meets transient data in steady-state measure-
ments, instrument failure, human error or model nonlinearity [1,
2], non-Gaussianmeasurement error could be generated. Such out-
liers that are far away from the expected measuring data raise the
potential risk of misleading the estimation result [3]. The influence
of bad data or outliers on the estimated results and one method to
suppress the bad measurements during the iterative process has
been proposed in [4]. Robust estimators with different objective
functions such as the Quadratic-Constant (QC), Quadratic-Linear
(QL), Square-Root (SR) and Multiple-Segment (MS) estimator have
also been introduced to solve this kind of problem [5–7]. More-
over, robust estimation has also been applied to such systems that
all measurements are collected from phasor measurement units
(PMUs) [8–10].

The Moving Horizon Estimation (MHE) aims to solve at each
time instant an optimization problem by using a limited amount
of most recent information [11]. The states are estimated by
minimizing an overall objective function which consists of sensor
model error, process model error, and error in the state estimate
at the beginning of the window [12]. The constraints on states

E-mail address: chen0887@e.ntu.edu.sg.

have also been exploited in the optimization process. This can
overcome the issues such as the suboptimal estimates or instability
of the error dynamics [13]. By having these constraints in the
optimization, MHE is more robust to the measurement outliers.
[14] propose one kind of robustMHE. It generates a robust estimate
by separately minimizing a set of least-squares cost functions,
where the measurements affected by outliers are left out. Finally
the estimation result associated with the lowest cost is chosen.
One drawback of this method is that the observability of estimator
cannot be guaranteed when some measurements are deleted.

In this paper, after combining the advantages of the MHE
and the robust estimators such as QC, QL, SR and MS, a re-
weighted MHE (RMHE) algorithm is proposed for robust PSSE. The
RMHE uses the same method proposed in [15,4,16] to deal with
the outliers, where the variances of outliers are updated online
based on the measurements. The weights of the outliers will be
mitigated but the observability of estimator is not influenced.
Moreover, the constraints are exploited in the optimization
process in order to alleviate the influence of outliers. In order to
accelerate the performance of RMHE, the Alternating Direction
Method of Multipliers (ADMM) is adapted to solve the quadratic
problem based on RMHE. The ADMM is a powerful algorithm
for solving structured convex optimization problems. It provides
a structured way of decomposing very large problems into
smaller-subproblems that can be solved efficiently [17]. Numerical
simulations with the IEEE 14-bus benchmark system show the
effectiveness of RMHE.

This paper is organized as follows. The robust state estimation
problem is formulated in Section 2. The RMHE algorithm is
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Nomenclature

State variables

x State vector
x̂ Estimated state
V r
i Real part of the voltage phasor at bus i

V im
i Imaginary part of the voltage phasor at bus i

w Process noise

Measurements and noise

z Measurements from Phasor Measurement Unit
v Measurement noise

Functions

ei,k The ith measurement residual at time step k
ρ(ei,k) Chosen function of ei,k
J Cost function
fi(vi) Probability density function of vi
H Measurement matrix
Wi,k Weighting factor for ithmeasurement at time step k
Ψ Derivative of J w.r.t. x̂

Numbers and others

m Number of measurements in 1 batch
n Number of states
N Number of batches
i Measurement index
t, k Time index
q Iteration index
(k) Iteration index in ADMM
ai First threshold for traditional estimator i
bi Second threshold for traditional estimator i
ri Third threshold for traditional estimator i
σi Standard deviation of measurement noise vi
R Diagonal matrix
P state covariance matrix
x Vector [x̂Tt−N · · · x̂

T
t ]

T

Z Vector [zTt−N · · · z
T
t ]

T

ρ0 The penalty parameter in ADMM algorithm
r (k+1) The primal residuals in ADMM algorithm
s(k+1) The dual residuals in ADMM algorithm

proposed in Section 3. The simulations on IEEE 14-bus system is
given in Section 4. Finally the conclusions are made in Section 5.

2. Robust state estimation

2.1. Measurement model and state equation

This paper use rectangular coordinates. The linear measure-
ment model based on the PMUs [8] is given by

zt = Hxt + vt , (1)

where t is the time step and z ∈ Rm is the measurement vector
composed of the real and imaginary components of bus voltage
(or the line current) phasors. The state vector is given as x =
[V r

1 · · · V
r
n V im

1 · · · V
im
n ]

T
∈ Rn, in which V r

i and V im
i (i = 1, . . . , n

2 )
are the real and imaginary components of the bus voltage phasors,
respectively. v is assumed to be noise with zero mean.

Specially the ith measurement is given by

zi,t = Hixt + vi,t , (2)

where the subscript i is the index and vi is uncorrelated between
different measurements.

In this paper, the following assumptions are held:

Assumption 1. The local state estimation is performed using
the measurement data collected within the same system-wide
updating time interval.

Assumption 2. The system is observable by PMUs andmatrix G =
HTH is full rank.

The following simplified process model is considered for the
state estimation problem [18,19]:

xt+1 = Axt + wt , (3)

where A is assumed to be an identitymatrix [18] andwt represents
the zero-mean disturbance with variance Q > 0.

2.2. Robust estimators

In this sectionwewill discuss different types ofM-estimators [5].
A traditional power systemmaybe considered as a quasi-static sys-
tem [18,20] because load demands change slowly and hence the
state changes slowly, i.e. xt−N ≈ · · · ≈ xt ≈ x. Given N + 1 sets of
measurements zi,k, k = t − N, . . . , t collected from i = 1, . . . ,m
measurements, the state x can be estimated byminimizing the cost
function as follows:

J =
m
i=1

t
k=t−N

ρ(ei,k), (4)

where ei,k is the measurement residual,

ei,k = zi,k − Hix̂. (5)

Eq. (5) gives ∂ei,k
∂ x̂ = −(Hi)

T . Differentiating the above cost function
(4) with respect to x̂,
∂ J
∂ x̂
= Ψ (E) =

∂ J
∂ei,k

∂ei,k
∂ x̂

=

m
i=1

t
k=t−N

∂ρ(ei,k)
∂ei,k

1
ei,k

ei,k
∂ei,k
∂ x̂k

= −

m
i=1

t
k=t−N

Wi,kei,k(Hi)
T , (6)

where

Wi,k =

m
i=1

t
k=t−N

∂ρ(ei,k)
∂ei,k

1
ei,k

. (7)

Using Eq. (5), Ψ (E) can also be written by

Ψ (E) = −

m
i=1

t
k=t−N

Wi,k(zi,k − Hix̂)(Hi)
T

= −H̄TWE

= −H̄TW (Z − H̄x̂), (8)

where

H̄ =

HT
· · ·HT T

∈ R(N+1)m×n,

Z =

zTt−N · · · z

T
t

T
∈ R(N+1)m,

E =

eTt−N · · · e

T
t

T
∈ R(N+1)m,

W = diag

W1,t−N , . . . ,Wm,t−N , . . . ,W1,t , . . . ,Wm,t


∈ R(N+1)m×(N+1)m.
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