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Travel time is an important index for managers to evaluate the performance of transporta-
tion systems and an intuitive measure for travelers to choose routes and departure times.
An important part of the literature focuses on predicting instantaneous travel time under
recurrent traffic conditions to disseminate traffic information. However, accurate travel
time prediction is important for assessing the effects of abnormal traffic conditions and
helping travelers make reliable travel decisions under such conditions. This study proposes
an online travel time prediction model with emphasis on capturing the effects of anoma-
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lies. The model divides a path into short links. A Functional Principal Component Analysis
(FPCA) framework is adopted to forecast link travel times based on historical data and real-
time measurements. Furthermore, a probabilistic nested delay operator is used to calculate
path travel time distributions. To ensure that the algorithm is fast enough for online appli-

cations, parallel computation architecture is introduced to overcome the computational
burden of the FPCA. Finally, a rolling horizon structure is applied to online travel time pre-
diction. Empirical results for Guangzhou Airport Expressway indicate that the proposed
method can capture an abrupt change in traffic state and provide a promising and reliable
travel time prediction at both the link and path levels. In the case where the original FPCA
is modified for parallelization, accuracy and computational effort are evaluated and com-
pared with those of the sequential algorithm. The proposed algorithm is found to require
only a piece rather than a large set of traffic incident records.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Travel time is a key performance index of transport systems and an intuitive measure that can be perceived by road users.
Travel time can be used as an essential evaluation criterion for traffic managers to devise efficient traffic control schemes to
alleviate traffic congestion. However, the provision of travel time information through advanced traveler information sys-
tems (ATISs) may have a great impact on drivers decisions, such as route choices and departure times, and thus improve net-
work performance. As traffic networks are subject to both demand and supply uncertainties, especially incident scenarios
and adverse weather conditions, travel time indicates stochastic fluctuations (Lam et al., 2008). As unexpected traffic inci-
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dents account for major delays on freeway systems (Ozbay and Kachroo, 1999; Stathopoulos and Karlaftis, 2002; Du et al.,
2012), the variability of travel time is a growing concern for individual travelers and other participants, especially those with
tight time constraints. Under such circumstances, estimating or predicting the average travel time may not be sufficient. For
these reasons, travel time reliability (TTR) is recognized as a critical factor contributing to the efficiency and service quality of
a transportation system. To evaluate TTR, it is necessary to obtain travel time distributions that reflect real-world variability
and uncertainty. However, stochastic traffic phenomena render the estimation or prediction of travel time distributions a
challenging task that requires a combination of correct physics and strong statistical tools (Yildirimoglu and Geroliminis,
2013). In addition, the dissemination of travel time information requires on-line deployment. Thus, there is a strong need
to devise an online prediction methodology that allows travel time distributions that can adapt to anomalies such as traffic
accidents and adverse weather conditions.

Major travel time estimation methods can be categorized into two groups: data-driven methods and hybrid data-driven/
model-driven methods. Data-driven methods are the most commonly used approaches for travel time estimation or predic-
tion using various traffic data, e.g. loop detector data (Kwon et al., 2001; Coifman, 2002; Coifman and Krishnamurthy, 2007),
Bluetooth (Nantes et al., 2015), probe vehicles (Herrera and Bayen, 2010; Jenelius and Koutsopoulos, 2013, 2015), cellular
phones (Rose, 2006), vehicle re-identification (VRI) data (Wang et al., 2014) and multiple data sources fusion (Patire
et al., 2015). There are two major categories of methods applied to data-driven travel time estimation in the transportation
literature: parametric methods (e.g., linear regression, time series models) and non-parametric methods (e.g., neural net-
work models). Interested readers are referred to several state-of-the-art review papers in this stream of the literature, i.e.
Karlaftis and Vlahogianni (2011), Vlahogianni et al. (2014), Oh et al. (2015), Mori et al. (2015). Roughly speaking, parametric
methods have more solid and widely accepted mathematical foundations than non-parametric methods. However, paramet-
ric statistical methods are more computationally extensive, suffer from the curse of dimensionality, and frequently fail when
dealing with complex and highly nonlinear data. Non-parametric methods may outperform parametric methods in these
respects, yet suffer from complex training with site-specific limitations and black-box procedures. Non-parametric methods
are not explanatory for field applications in spite of their prediction performance.

In particular, few studies have tackled the problem of forecasting travel time under anomalies. A pattern recognition
method (Bajwa et al., 2005), an online support vector machine for regression (Castro-Neto et al., 2009) and an adaptive
dynamic linear model (Fei et al., 2011) were developed for travel time prediction under both recurrent and non-recurrent
traffic conditions. Cheng et al. (2014), Fusco et al. (2016) assessed the performance of several state-of-art methods for
short-term prediction such as the autoregressive integrated moving average (ARIMA) and neural network (NN). Neverthe-
less, these studies drew the same conclusion: the performance of those state-of-the-art methods deteriorated tremendously
under abnormal traffic patterns caused by demand and supply uncertainties including traffic incidents. In contrast, Wu et al.
(2012) proposed a gradient boosting approach to predict traffic conditions under anomalous conditions while disabling the
approach when the traffic state returned to normal. Although data-driven methods show good adaptiveness to measure-
ments, they are fragile under demand and supply uncertainties (or lack of robustness) and unable to describe the traffic
dynamics, e.g., congestion onset and dissolution (Sumalee et al., 2013; Pan et al., 2013). Moreover, the essential problem fac-
ing by the dissemination of travel time information is the prediction of “short-term” future traffic conditions along the route.
An appropriate traffic model would be helpful in this area, and even better if the underlying model is robust to demand and
supply uncertainties (Zhong et al., 2014).

Combining the data-driven approach with a certain traffic model would achieve both adaptiveness to the actual measure-
ments and robustness to uncertainties. Xia et al. (2010) used physical queue length under incident conditions to enhance the
prediction accuracy of travel time. Domenichini et al. (2012) developed a travel time prediction model for both normal and
accident conditions requiring the knowledge of accident characteristics, traffic flow during the accident and the capacity
drop. Yildirimoglu and Geroliminis (2013) proposed an automatic bottleneck identification algorithm and congestion search
algorithm to predict travel times along with the traffic flow fundamentals. Nantes et al. (2016) developed a robust estimation
of traffic state using a certain fundamental diagram and fusing heterogeneous sources of synthetic data. In addition, some
studies were proposed to evaluate link travel time distributions. Kharoufeh and Gautam (2004) captured stochastic link tra-
vel time distributions analytically, which implicitly described the time dependence of vehicle speed in terms of partial dif-
ferential equations. Kachroo and Sastry (2016) analyzed the limitation of the flow-based travel time functions and then
proposed a density-based (link) travel time function and further developed its dynamics in terms of hyperbolic partial dif-
ferential equations from a given fundamental traffic relationship and vehicle characteristics. These analytical models cannot
deduce general explicit expressions for high-order moments of travel time while it is computationally demanding and not
ready to be extended to capture route travel time distributions.

There are two ways for evaluating journey time: instantaneous and experienced (also known as the nested delay operator
in the dynamic traffic assignment literature). Instantaneous journey time is calculated by summing the link travel times
along the path at the departure time of the trip. An important part of the literature provides instantaneous journey time esti-
mation/prediction (Yildirimoglu and Geroliminis, 2013). Experienced journey time is evaluated by tracing a trajectory
through the velocity field (Yildirimoglu and Geroliminis, 2013; Chow et al, 2015, 2017). Sumalee et al. (2013),
Yildirimoglu and Geroliminis (2013) analyzed the superiority of experienced journey time over instantaneous journey time
and proposed a methodological framework that considered the traffic flow essentials (e.g., shockwaves and bottlenecks) for
experienced journey time prediction using historical and real-time traffic data. They found that the accuracy of such an
approach depended on the way the data were clustered to generalize the stochastic congestion map and the definition of
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