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a b s t r a c t

Technological limitations and practical difficulties cause inevitable losses of traffic data in
the typical processing chain of an intelligent transportation system. This has motivated the
development of imputation algorithms for mitigating the consequences of such losses. As
the involved datasets are usually multidimensional and bear strong spatio-temporal corre-
lations, we propose for traffic data imputation a tensor completion algorithm which pro-
motes parsimony of an estimated orthogonal Tucker model by iteratively softly
thresholding its core. The motivation of this strategy is discussed on the basis of character-
istics typically possessed by real-world datasets. An evaluation of the proposed method
using speed data from the Grenoble south ring (France) shows that our algorithm outper-
forms other imputation methods, including tensor completion algorithms, and delivers
good results even when the loss is severely systematic, being mostly concentrated in long
time windows (of up to three hours) spread along the considered time horizon.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Many tasks performed by an intelligent transportation system hinge upon a timely, reliable and continuous gathering of
data by numerous sensors across several locations. This includes the monitoring and the prediction of traffic conditions, but
also the provision of data to users, companies, relevant authorities and researchers for information, management, decision-
making and scientific purposes.

Unfortunately, however, the data acquisition process is typically subject to failures which result in the loss of a significant
amount of data. Common causes are the malfunctioning of sensing devices, of network links or processing units. This
problem is quite pervasive and well documented. For instance, Zhong et al. (2004) have reported a study involving datasets
provided by highway agencies in Canada and the United States in which missing data ratios range from 20% up to 90%.
Similarly, Smith et al. (2003) mention the occurrence of up to 84% missing entries in datasets gathered by the Texas
Transportation Institute.

Data imputation techniques have long played an important role in mitigating the consequences of such a (possibly quite
severe) loss of information, Smith et al. (2003), Albright (1991). Many diverse strategies were proposed for this task, includ-
ing simple ad-hoc approaches exploiting temporal or spatial correlation, standard statistical techniques such as regression
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and the expectation-maximization algorithm, neural networks and deep learning algorithms, Zhong et al. (2004), Li et al.
(2013), Canudas de Wit et al. (2015), Tang et al. (2015), Duan et al. (2016).

Some of these methods rely on a matrix representation of the traffic data, as done, for instance, in Qu et al. (2009), Li et al.
(2015), Asif et al. (2013). In particular, Asif et al. (2013) have employed a matrix completion algorithm, assuming the traffic
data can be modeled by a low-rank matrix. In essence, this low dimensionality comes from the correlations contained in the
dataset. However, approaches based on matrix models are limited in that only two modes or diversities can be jointly
exploited (say, one spatial and one temporal mode). By contrast, methods based on higher-order tensors have no such lim-
itation, allowing to capture the structure of the data more naturally by introducing several temporal and spatial modes. For
instance, one can have modes associated with space, day, week, month, minute of the day, and so on.

Recently, the use of low-rank tensor completion (TC) methods has been proposed for addressing the imputation of traffic
data, Tan et al. (2013), Asif et al. (2013), Tan et al. (2014), Ran et al. (2015, 2016). The idea is to capitalize on the multidi-
mensional structure of traffic datasets in order to fill in the missing entries by fitting the data to a low-rank tensor model.
Similarly to the approach based on matrix completion, this is motivated by the fact that low-rank tensors are quite often able
to accurately model this kind of data, because of the strong spatial and temporal correlations that are typically present: dif-
ferent sensors tend to have similar readings in the same time of the day; the readings made by a sensor tend to be highly
similar for different days; the trends observed along different weeks tend to resemble each other. The interest in this kind of
approach is in part spurred also by the success of matrix completion techniques in many different applications, Candés and
Plan (2010).

In this spirit, Tan et al. (2013) propose a first-order algorithm for optimizing the components of a Tuckermodel having low
multilinear rank, henceforth abbreviated as mrank (see Section 2.1 for definitions of these concepts). The same model is
adopted by Tan et al. (2014), who apply a Riemannian optimization algorithm to search for a minimum along the product
of Grassmann manifolds associated with the model factors. It also underlies the approach used by Ran et al. (2015), Ran
et al. (2016), who employ an algorithm based on the minimization of the sum of nuclear norms (SNN) of the model’s matrix
unfoldings (see Section 2.1) namedHaLRTC, Liu et al. (2013). A dynamic tensor completionmethodwas also recently proposed
by Tan et al. (2016) for short-termflowprediction using low-rankmatrix factorizations ofmatrix unfoldings of the data tensor.

Instead of exhibiting an ideally low mrank, traffic data tensors (or, more generally, real-world tensors, for that matter)
typically possess matrix unfoldings having decaying singular values, which can be seen as a kind of compressibility (in the
sense used in compressive sensing, Foucart and Rauhut (2013)). The decay rate, however, is often not fast enough to allow
accurate modeling with a Tucker model of considerably low mrank. In this situation, algorithms imposing a hard constraint
of exactly low mrank often yield unsatisfying results. On the other hand, the estimate obtained by minimizing the SNN of
matrix unfoldings is equally unsatisfying in many cases, which is explained by the suboptimality of this approach in terms
of sampling requirements, Mu et al. (2014).

As an alternative, this paper proposes an approach for TC based on employing an iterative single imputation scheme
which promotes parsimony of an orthogonal Tucker model by softly thresholding its core. When completing real-world data,
this strategy indeed outperforms algorithms imposing a hard constraint of exactly low mrank quite often, as well as that
based on SNN minimization. We explain how our method can be interpreted in light of the compressibility property above
mentioned, arguing that the latter is related to the compressibility of the core of the higher-order singular value decompo-
sition (HOSVD), De Lathauwer et al. (2000). Performance improvement techniques involving an exponentially decaying
threshold and a feedback mechanism are also proposed for our algorithm, which brings benefits both in terms of conver-
gence speed and of accuracy.

Our approach is validated by means of simulations performed with data acquired by the Grenoble Traffic Lab (GTL) sys-
tem, Canudas de Wit et al. (2015). Specifically, we simulate the occurrence of systematic data loss caused by permanent sen-
sor malfunctioning, with missing data windows of up to three hours. The obtained results show that our approach is able to
well reconstruct the data, being quite robust to these severely long data losses. It also outperforms four other TC algorithms
and a matrix completion one.

The rest of the paper is organized as follows. In Section 2, some tensor basics are recalled, and the tensor completion prob-
lem is briefly introduced. Then, in Section 3, we derive our proposed tensor completion method, discuss the relevance of its
rationale in the context of traffic data estimation and present the employed performance improvement techniques. The per-
formance of the proposed solution is evaluated in Section 4 through experiments conducted with real traffic data of GTL,
which involve comparison with several other imputation techniques. The paper is concluded in Section 5, where some per-
spectives are drawn for future work.

2. Problem statement and review of existing approaches

2.1. Tensor basics

Before formalizing our problem of interest, let us recall some definitions and tensor decompositions.
Scalars, column vectors, matrices, and tensors of order higher than two are denoted by lower-case, bold lower-case, bold

upper-case, and upper-case calligraphic letters, e.g., a; a; A; A, respectively. The operator vecð�Þ vectorizes its matrix (or
tensor) argument, and the inverse of the vectorization operator is denoted unvecð�Þ. The symbol � represents the Hadamard
(element-wise) product.
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