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a b s t r a c t

Vehicle trajectories with high spatial and temporal resolution are known as the most ideal
source of data for developing innovative microscopic traffic models. Aside from the method
applied for collecting the vehicle trajectories, such data are more or less error-infected. The
ever-increasing noise amplitude during the process of deriving the data (such as speed and
acceleration) required for developing models, might change or even hide the structure of
data and lead to useful information being overlooked. This highlights the importance of
presenting the efficient methods which are adequate to remove noise and enhance the
quality of vehicle trajectory data. Accordingly, in this paper a simple two-step technique
based on wavelet analysis has been recommended for filtering errors and reconstructing
trajectory data. Primarily, by using wavelet transform a special treatment was employed
to identify and modify the outliers. Next, the noise in trajectory data was eliminated by
applying the wavelet-based filter. The results of applying the proposed method to the syn-
thetic noise-infected trajectory and the NGSIM dataset reveal how appropriate its perfor-
mance is compared with other methodologies in terms of quantitative criteria.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Progress in technology and the possibility of collecting vehicle trajectory data with high frequency have widened new
horizons in understanding the driving behavior and developing, calibrating and validating the microscopic traffic flow mod-
els (e.g. car-following, lane-changing and gap-acceptance). As a consequence, a more realistic understanding of the driver’s
behavior and traffic flow dynamics is apparent. Traffic trajectories are temporally and spatially more accurate and precise
compared with other types of traffic data and enable calculating many traffic flow variables. With respect to the fact that
the real world data is scarcely noiseless (or negligible with little noise), extracting useful information from raw data often
requires the theoretically reasonable and robust noise removal methods.

Vehicle trajectory data constitutes a series of discrete positional location of vehicles in consecutive time intervals. The
existing procedures of collecting vehicle trajectory data can be categorized into two main classes: (1) extended floating
car (ExFC) and (2) aerial photography. In the former, the relative speed, acceleration and spacing of equipped vehicle to sur-
rounding ones are recorded continuously with high frequency as the vehicle moves in traffic flow. The recorded data are then
used to obtain the speed, acceleration and positional location of leader and follower vehicle (Brackstone et al., 1999; Ma and
Andreasson, 2005). An alternative extended floating car approach exists in which, the vehicles are equipped with highly
accurate GPS and move as platoons in traffic flow. Giving the positional location of vehicles through GPS raw data, the speed,

http://dx.doi.org/10.1016/j.trc.2016.11.010
0968-090X/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: shariat@iust.ac.ir (A. Shariat Mohaymany).

Transportation Research Part C 74 (2017) 150–167

Contents lists available at ScienceDirect

Transportation Research Part C

journal homepage: www.elsevier .com/locate / t rc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.trc.2016.11.010&domain=pdf
http://dx.doi.org/10.1016/j.trc.2016.11.010
mailto:shariat@iust.ac.ir
http://dx.doi.org/10.1016/j.trc.2016.11.010
http://www.sciencedirect.com/science/journal/0968090X
http://www.elsevier.com/locate/trc


acceleration and inter-vehicle spacing are calculated (Gurusinghe et al., 2002; Punzo and Simonelli, 2005). The possibility of
long-term data collection, covering various traffic conditions, and providing accessibility to supplementary data, i.e. driver’s
age or gender as well as the possibility of recording data related to interaction between driver and vehicle (addressed as Nan-
odata) using CAN-bus is regarded as the substantial distinction of this approach. Notwithstanding the adequacy of data
obtained through the mentioned approach to compare the microscopic traffic models as well as develop the nanoscopic ones,
the data might be influenced by the experimental conditions.

The second approach, which has been employed extensively to collect the trajectory data, is through video recording of a
segment and extracting the trajectories using image processing and tracking algorithms. Aerial photography is basically con-
ducted by mounting the camera on a fixed position (FHWA, 2004; Wei et al., 2005; Xin et al., 2008) or on-board aerial plat-
form (Hoogendoorn et al., 2003; Smith, 1985; Treiterer, 1975). The principle advantage of this method is it allows a large
amount of trajectory data to be extracted and consequently, macroscopic and microscopic description of traffic flow is
obtained. Nevertheless, short length of segment and accordingly, the short temporal period of each trajectory can be
regarded as the limitations of this method.

Apart from the methodology applied to collect vehicle trajectories, imposing the measurement and processing errors to
raw data is inevitable. While measurement errors are produced as random noise on positional location of vehicles (or other
variables which are directly recorded), processing errors occur due to process of numerical derivative of trajectory data
which is required to extract the speed and acceleration. The derivative is essential because most of the microscopic traffic
models such as car-following models (e.g. stimuli-response (Gazis et al., 1961), intelligent drive model (Treiber et al.,
2000), safety distance (Gipps, 1981) and optimal velocity (Bando et al., 1995)) and lane-changing ones (e.g. discrete choice
(Toledo et al., 2003) and rule-based (Gipps, 1986)) require speed and acceleration data in addition to the positional location
of vehicles. Depending on the required accuracy, different methods of numerical derivation have been suggested. Approxi-
mation to the first and second-order derivative of f(x) and the related errors using five-point stencil approach have been indi-
cated in Eqs. (1) and (2) respectively. It can be inferred that, the first and second derivative errors are four-order. The
resulting numerical derivative will be negligible because the trajectory data is commonly recorded with high temporal res-
olution (0.1 s).

f 0ðxÞ ¼ f ðx� 2hÞ � 8f ðx� hÞ þ 8f ðxþ hÞ � f ðxþ 2hÞ
12h

þ Oðh4Þ ð1Þ

f 00ðxÞ ¼ �f ðxþ 2hÞ þ 16f ðxþ hÞ � 30f ðxÞ þ 16f ðx� hÞ � f ðx� 2hÞ
12h2 þ Oðh4Þ ð2Þ

The main complexity while applying the trajectory data is the ever-growing amplitude related to random noise of posi-
tional location which occurs due to numerical derivative (Punzo et al., 2011; Toledo et al., 2007; Treiber and Kesting, 2013).
Consider two consecutive observations of the positional location of the same vehicle, including the actual values plus rela-
tively little noise (X1 and X2 are the location of first and second location). The corresponding noise values (e1 and e2) are
independent with probability density function f(x). In order to obtain speed, derivative approximation through forward dif-
ferencing technique is implemented as Eq. (3).

VðtÞ ¼ ½X2ðt þ DtÞ þ e2ðt þ DtÞ� � ½X1ðtÞ þ e1ðtÞ�
Dt

ð3Þ

The numerator of Eq. (3) constitutes a deterministic (X2ðt þ DtÞ � X1ðtÞ) and a random component (e2ðt þ DtÞ � e1ðtÞ). If
the value related to random variables, e1 and e2 with corresponding probability density function, f e1 ðxÞ and f e2 ðxÞ is known,
the probability density function of a new random variable (z ¼ e2 � e1) is acquired based on Eq. (4) which is the convolution
of f e2 � f�e1 .

PZðzÞ ¼ ðf e2 � f�e1 ÞðzÞ ¼
Z þ1

�1
f e2 ðeÞf�e1 ðz� eÞde ð4Þ

Assuming Gaussian noises with mean zero and standard deviation r, the integration of Eq. (4) follows a Gaussian distri-
bution with standard deviation equal to

ffiffiffi
2

p
r (Eq. (5)). The result is then divided by the denominator (Dt) and the resulting
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Accordingly, it is evident that the noise amplitude grows noticeably by the sequential derivative of positions. For instance,
a Gaussian noise with the mean and standard deviation corresponding to 0 and 5 cm in trajectory position would impose an
extreme error to speed (with mean 0 and standard deviation, 0.7 m/s) and acceleration (with mean 0 and standard deviation,
10 m/s2).

The negative effects of noise in the calibration of microscopic traffic models has thoroughly been addressed in literature.
The amount of effects differ depending on methodologies applied in the calibration process (direct or indirect). According to
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