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a b s t r a c t 

The paper systematically studies the impact of a range of recent advances in convolution neural net- 

work (CNN) architectures and learning methods on the object categorization (ILSVRC) problem. The eval- 

uation tests the influence of the following choices of the architecture: non-linearity (ReLU, ELU, max- 

out, compatability with batch normalization), pooling variants (stochastic, max, average, mixed), network 

width, classifier design (convolutional, fully-connected, SPP), image pre-processing, and of learning pa- 

rameters: learning rate, batch size, cleanliness of the data, etc. 

The performance gains of the proposed modifications are first tested individually and then in combina- 

tion. The sum of individual gains is greater than the observed improvement when all modifications are 

introduced, but the “deficit” is small suggesting independence of their benefits. 

We show that the use of 128 × 128 pixel images is sufficient to make qualitative conclusions about 

optimal network structure that hold for the full size Caffe and VGG nets. The results are obtained an 

order of magnitude faster than with the standard 224 pixel images. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Deep convolution networks have become the mainstream 

method for solving various computer vision tasks, such as 

image classification ( Russakovsky et al., 2015 ), object detec- 

tion ( Everingham et al., 2010; Russakovsky et al., 2015 ), semantic 

segmentation ( Dai et al., 2016 ), image retrieval ( Tolias et al., 2016 ), 

tracking ( Nam and Han, 2015 ), text detection ( Jaderberg et al., 

2014 ), stereo matching ( Žbontar and LeCun, 2014 ), and many other. 

Besides two classic works on training neural networks – ( LeCun 

et al., 1998b ) and Bengio (2012) , which are still highly rele- 

vant, there is very little guidance or theory on the plethora 

of design choices and hyper-parameter settings of CNNs with 

the consequence that researchers proceed by trial-and-error ex- 

perimentation and architecture copying, sticking to established 

net types. With good results in ImageNet competition, the 

AlexNet ( Krizhevsky et al., 2012 ), VGGNet ( Simonyan and Zisser- 

man, 2015 ) and GoogLeNet(Inception) ( Szegedy et al., 2015 ) have 

become the de-facto standard. 

Theory-grounded recommendations for the selection the num- 

ber of neurons ( Ithapu et al., 2017; Schmidhuber, 1997 ), network 
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depth ( Gao and Jojic, 2016 ), effective receptive field size ( Luo et al., 

2016 ), etc. have been published. The topic of local minima in 

deep network optimization is well covered by Choromanska et al. 

(2014) and by Soudry and Carmon (2016) . However, the latest 

state of art results have been achieved by hand-crafted architec- 

tures ( Zagoruyko and Komodakis, 2016 ) or by large-scale “trial- 

end-error” reinforcement learning search ( Zoph and Le, 0 0 0 0 ). 

Improvements of many components of the CNN architecture 

like the non-linearity type, pooling, structure and learning have 

been recently proposed. First applied in the ILSVRC ( Russakovsky 

et al., 2015 ) competition, they have been adopted in different re- 

search areas. 

The contributions of the recent CNN improvements and their 

interaction have not been systematically evaluated. We survey the 

recent developments and perform a large scale experimental study 

that considers the choice of non-linearity, pooling, learning rate 

policy, classifier design, network width, batch normalization ( Ioffe 

and Szegedy, 2015 ). We did not include ResNets ( He et al., 2016a ) –

a recent development achieving excellent results – since they have 

been well covered in papers ( He et al., 2016b; Larsson et al., 2016; 

Szegedy et al., 2016; Zagoruyko and Komodakis, 2016 ). 

There are three main contributions of the paper. First, we sur- 

vey and present baseline results for a wide variety of architectures 

and design choices both individually and in combination. Based 
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Table 1 

List of hyper-parameters tested. 

Hyper-parameter Variants 

Non-linearity linear, tanh, sigmoid, ReLU, VLReLU, RReLU, 

PReLU, ELU, maxout, APL, combination 

Batch Normalization (BN) before non-linearity. after non-linearity 

BN + non-linearity linear, tanh, sigmoid, ReLU, VLReLU, 

RReLU, PReLU, ELU, maxout 

Pooling max, average, stochastic, max + average, 

strided convolution 

Pooling window size 3 × 3, 2 × 2, 3 × 3 with zero-padding 

Learning rate decay policy step, square, square root, linear 

Colorspace & Pre-processing RGB, HSV, YCrCb, grayscale, learned, 

CLAHE, histogram equalized 

Classifier design pooling-FC-FC-clf, SPP-FC-FC-clf, 

pooling-conv-conv-clf-avepool, 

pooling-conv-conv-avepool-clf 

Network width 1/4, 1/ 2 
√ 

2 , 1/2, 1/ 
√ 

2 , 1 , 
√ 

2 , 2, 2 
√ 

2 , 4, 4 
√ 

2 

Input image size 64, 96, 128, 180, 224 

Dataset size 20 0k, 40 0k, 60 0k, 80 0k, 120 0k(full) 

Batch size 1, 32, 64, 128, 256, 512, 1024 

Percentage of noisy data 0, 5%, 10%, 15%, 32% 

Using bias yes/no 

on a large-scale evaluation, we provide novel recommendations 

and insights into deep convolutional network structure. Second, we 

show that for popular architectures – AlexNet, GoogLeNet, VGGNet 

– the recommendations based on results obtained on small images 

hold for common image size 224 × 224 or even 300 × 300 pixels 

which allows very fast testing. Last, but not least, the benchmark 

is fully reproducible and all scripts and data are available online. 1 

The paper is structured as follows. In Section 2.1 , we explain 

and validate experiment design. In Section 3 , the influence of 

a range of hyper-parameters is evaluated in isolation. The re- 

lated literature is review the corresponding in experiment sections. 

Section 4 is devoted to the combination of best hyper-parameter 

setting and to “squeezing-the-last-percentage-points” for a given 

architecture recommendation. The paper is concluded in Section 5 . 

2. Evaluation 

Standard CaffeNet parameters and architecture are shown in 

Table 2 . The full list of tested attributes is given in Table 1 . 

2.1. Evaluation framework 

All tested networks were trained on the 10 0 0 object category 

classification problem on the ImageNet dataset ( Russakovsky et al., 

2015 ). The set consists of a 1.2M image training set, a 50k image 

validation set and a 100k image test set. The test set is not used in 

the experiments. The commonly used pre-processing includes im- 

age rescaling to 256 × N , where N ≥ 256, and then cropping a ran- 

dom 224 × 224 square ( Howard, 2013; Krizhevsky et al., 2012 ). The 

setup achieves good results in classification, but training a network 

of this size takes several days even on modern GPUs. We thus pro- 

pose to limit the image size to 144 × N where N ≥ 128 (denoted 

as ImageNet-128px). For example, the CaffeNet ( Jia et al., 2014 ) is 

trained within 24 h using NVIDIA GTX980 on ImageNet-128px. 

2.1.1. Architectures 

The input size reduction is validated by training CaffeNet, 

GoogLeNet and VGGNet on both the reduced and standard image 

sizes. The results are shown in Fig. 1 . The reduction of the input 

image size leads to a consistent drop of around 6% in top-1 accu- 

racy for all three popular architectures and does not change their 

relative order (VGGNet > GoogLeNet > CaffeNet) or accuracy dif- 

ference. 

1 https://www.github.com/ducha- aiki/caffenet- benchmark . 

Table 2 

The basic CaffeNet architecture used in most experiments. Pad 1 – zero-padding 

on the image boundary with1 pixel. Group 2 convolution – filters are split into 2 

separate groups. The architecture is denoted in “shorthand” as 96C11/4 → MP3/2 

→ 192G2C5/2 → MP3/2 → 384G2C3 → 384C3 → 256G2C3 → MP3/2 → 2048C3 

→ 2048C1 → 10 0 0C1. 

input image 128 × 128 px, random crop from 144 × N , random mirror 

pre-process out = 0.04 (BGR - (104; 117; 124)) 

conv1 conv 11 × 11 × 96, stride 4 

ReLU 

pool1 max pool 3 × 3, stride 2 

conv2 conv 5 × 5 × 192, stride 2, pad 1, group 2 

ReLU 

pool2 max pool 3 × 3, stride 2 

conv3 conv 3 × 3 × 384, pad 1 

ReLU 

conv4 conv 3 × 3 × 384, pad 1, group 2 

ReLU 

conv5 conv 3 × 3 × 256, pad 1, group 2 

ReLU 

pool5 max pool 3 × 3, stride 2 

fc6 fully-connected 4096 

ReLU 

drop6 dropout ratio 0.5 

fc7 fully-connected 4096 

ReLU 

drop7 dropout ratio 0.5 

fc8-clf softmax-10 0 0 

Fig. 1. Impact of image and network size on top-1 accuracy. 

In order to decrease the probability of overfitting and to make 

experiments less demanding in memory, another change of Caf- 

feNet is made. A number of filters in fully-connected layers 6 and 

7 were reduced by a factor of two, from 4096 to 2048. The results 

validating the resolution reduction are presented in Fig. 1 . 

The parameters and architecture of the standard CaffeNet are 

shown in Table 2 . For experiments we used CaffeNet with 2 ×
thinner fully-connected layers, named as CaffeNet128-FC2048. The 

architecture can be denoted as 96C11/4 → MP3/2 → 192G2C5/2 

→ MP3/2 → 384G2C3 → 384C3 → 256G2C3 → MP3/2 → 2048C3 

→ 2048C1 → 10 0 0C1. Here we used fully-convolutional notation 

for fully-connected layers, which are equivalent when image input 

size is fixed to 128 × 128 px. The default activation function is 

ReLU and it is put after every convolution layer, except the last 

10 0 0-way softmax classifier. 

2.1.2. Learning 

SGD with momentum 0.9 is used for learning, the initial learn- 

ing rate is set to 0.01, decreased by a factor of ten after every 100k 

iterations until learning stops after 320k iterations. The L2 weight 

decay for convolutional weights is set to 0.0 0 05 and it is not ap- 

plied to bias. The dropout ( Srivastava et al., 2014 ) with probability 

0.5 is used before the two last layers. All the networks were initial- 
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