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a b s t r a c t

An efficient optimization procedure is introduced to find the optimal shapes of arch dams considering
fluid–structure interaction subject to earthquake loading. The optimization is performed by a combi-
nation of simultaneous perturbation stochastic approximation (SPSA) and particle swarm optimization
(PSO) algorithms. This serial integration of the two single methods is termed as SPSA–PSO. The operation
of SPSA–PSO includes three phases. In the first phase, a preliminary optimization is accomplished using
the SPSA. In the second phase, an optimal initial swarm is produced using the first phase results. In the last
phase, the PSO is employed to find the optimum design using the optimal initial swarm. The numerical
results demonstrate the high performance of the proposed strategy for optimal design of arch dams. The
solutions obtained by the SPSA–PSO are compared with those of SPSA and PSO. It is revealed that the
SPSA–PSO converges to a superior solution compared to the SPSA and PSO having a lower computation
cost.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

It is obvious that an appropriate shape design has a great influ-
ence on the economy and safety of an arch dam. In order to find
an optimal shape for arch dams, optimization techniques can be
effectively utilized. In the last years, some progress has been made
in optimum design of arch dams. Most of them did not consider the
fluid–structure interaction in their models and also used the con-
ventional optimization methods [1–3]. Neglecting the water effects
on arch dam design can lead to an unsafe design. Furthermore,
conventional optimization methods are usually gradient-based
algorithms.

By employing these methods for optimization of a large scale-
structure such as an arch dam, much computational effort can be
imposed to the process whereas trapping into local optima may be
also increased [4].

It was found that some methods such as simultaneous perturba-
tion stochastic approximation (SPSA) are computationally efficient
for gradient approximations [5,6]. This method can approximate
the gradient of a multi-variable function while it needs only two
measurements of the function. This characteristic can significantly
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reduce the computational cost of the optimization process, espe-
cially in problems with a great number of variables to be optimized.
Moreover, meta-heuristic algorithms, such as genetic algorithm
(GA) and particle swarm optimization (PSO) due to their stochastic
nature are robust tools to find the global solution in comparison
with the gradient-based methods. Many successful applications of
GA and PSO for engineering optimization have been reported in
the literature [7–11]. However, due to a great number of function
evaluations required for evolutionary algorithms, a modification on
their standard algorithms seems to be necessary [12–17]. In order
to overcome the computational cost involved, some soft computing
techniques such as using a neural network concept have been also
proposed [18,19].

In this study, a hybrid version of PSO with SPSA is introduced. An
efficient approach is presented to find the optimal shapes of arch
dams subjected to earthquake load utilizing a combination of SPSA
and PSO methods named here as SPSA–PSO. The load cases involved
here are gravity load, hydrostatic and hydrodynamic pressures and
earthquake load, which is treated with the time history analysis
of arch dam model. The concrete volume of the arch dam body
is considered as the objective function. The design variables are
the shape parameters of the arch dam. The design constraints are
defined to prevent the failure of each element of arch dam under
a specified safety factor using a given failure surface for concrete
material.
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Fig. 1. Central vertical section of arch dam.

The paper is organized as follows. A brief description of the
selected geometric model for arch dams is provided in Section 2.
The simulation of arch dam-water system using the finite element
method is discussed in Section 3. The dam optimization problem
is defined in Section 4 and the proposed SPSA–PSO is presented
in detail in Section 5. In order to assess the computational effi-
ciency of the proposed optimization procedure a real test example
is considered in Section 6 and finally, conclusions are presented in
Section 7.

2. Geometrical model of arch dam

In order to define the geometrical model of arch dams, the shape
of central vertical section is determined at first, and then by spec-
ifying the dam upstream and downstream radii of curvature at
different levels, the shape of the arch dam is defined using two
parabolic surfaces.

2.1. Shape of central vertical section

As shown in Fig. 1, for the curve of upstream face of central
vertical section a polynomial of 2nd order is considered as:

y(z) = b(z) = −sz + sz2

2ˇh
(1)

where h and s are the height of the dam and the slope at crest,
respectively. The point where the slope of the upstream face equals
to zero is z = ˇh in which 0 < � ≤ 1 is a constant.

By dividing the height of the dam into n segments contain-
ing n + 1 levels, the thickness of the central vertical section can be
expressed as:

tc(z) =
n+1∑
i=1

Li(z)tci (2)

where tci is the thickness of the central vertical section at ith level.
Also, in the above relation Li(z) is Lagrange interpolation function
associated with ith level given by:

Li(z) =
∏n+1

k=1z − zk∏n+1
k=1zi − zk

k /= i (3)

where zi denotes the z coordinate of ith level in the central vertical
section.

2.2. Radii of curvature at different levels

For radii of curvature correspond to upstream and downstream
boundaries, denoted by ru and rd, two functions of nth order with
respect to z can be utilized as:

ru(z) =
n+1∑
i=1

Li(z)rui (4)

rd(z) =
n+1∑
i=1

Li(z)rdi (5)

where rui and rdi are the values of ru and rd at ith level, respectively.
In this stage, the shape of a parabolic arch dam can be deter-

mined by the following two parabolic surfaces [1,2]:

yu(x, z) = 1
2ru(z)

x2 + b(z) (6)

yd(x, z) = 1
2rd(z)

x2 + b(z) + tc(z) (7)

where yu and yd are the upstream and downstream surfaces of the
dam, respectively.

3. Finite element model of arch dam-water system

In fluid–structure problems the discretized dynamic equations
of structure and fluid need to be considered simultaneously. The
governing equation in the fluid domain is the acoustic wave equa-
tion, shown in Eq. (8) [20–23].

1

c2
w

∂2p

∂t2
− ∇2p = 0 (8)

where cw is the speed of pressure wave, p = p(x, y, z, t) is acous-
tic pressure and t is time. Furthermore, �2 is three-dimensional
Laplace operator.

Some boundary conditions are imposed on Eq. (8), from which
the following boundary condition must be considered on the inter-
face:

nT∇p = −�w nT ∂2u

∂t2
(9)

where n is a unit normal vector to the interface, u is the displace-
ment vector of the structure at the interface and �w is the mass
density of water. At the fluid boundaries, a condition is required to
account for the dissipation of energy due to damping as:

∂p

∂n
= − 1 − ˛

cw(1 + ˛)
∂p

∂t
(10)

where 0 ≤ ˛ ≤ 1 denotes wave reflection coefficient.
At the free surface, when the surface wave is neglected, bound-

ary condition is easily defined as:

p = 0 (11)

Eqs. (8)–(11) can be discretized to get the matrix form of the
wave equation as:

Mfp̈e + C fṗe + K fpe + �wQ T(üe + üg) = 0 (12)

where Mf, Cf and Kf are fluid mass, damping and stiffness
matrices, respectively and pe, üe and üg are nodal pressure, nodal
acceleration and ground acceleration vectors, respectively. Also,
�wQT in the above relation is often referred to as coupling matrix.

The discretized structural dynamic equation subject to ground
motion can be formulated using the finite elements as:

Msüe + Csu̇e + K sue = −Msüg + Q pe (13)
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