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a b s t r a c t 

We present a method for view-invariant action recognition from depth cameras based on graph signal 

processing techniques. Our framework leverages a novel graph representation of an action as a tempo- 

ral sequence of graphs, onto which we apply a spectral graph wavelet transform for creating our fea- 

ture descriptor. We evaluate two view-invariant graph types: skeleton-based and keypoint-based. The 

skeleton-based descriptor captures the spatial pose of the subject, whereas the keypoint-based is able to 

capture complementary information about human-object interaction and the shape of the point cloud. 

We investigate the effectiveness of our method by experiments on five publicly available datasets. By the 

graph structure, our method captures the temporal interaction between depth map interest points and 

achieves a 19.8% increase in performance compared to state-of-the-art results for cross-view action recog- 

nition, and competing results for frontal-view action recognition and human-object interaction. Namely, 

our method results in 90.8% accuracy on the cross-view N-UCLA Multiview Action3D dataset and 91.4% 

accuracy on the challenging MSRAction3D dataset in the cross-subject setting. For human-object interac- 

tion, our method achieves 72.3% accuracy on the Online RGBD Action dataset. We also achieve 96.0% and 

98.8% accuracy on the MSRActionPairs3D and UCF-Kinect datasets, respectively. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

We live in a world where machines are able to either aid or 

completely replace humans in a large variety of tasks. Most such 

tasks are quite trivial and monotonic, but thanks to the advent of 

machine learning, we are at the verge of being able to demand sat- 

isfying performance even for more complex tasks. One such task is 

action recognition. If machines could robustly recognize and inter- 

pret human actions and gestures, the benefits would be vast for 

a number of areas, including games, health care and the security 

industry. 

Classic approaches to action recognition based on simple color 

images face numerous difficulties due to intra-class variations of 

actions, background clutter and illumination variations. However, 

thanks to the emergence of cheap and affordable depth maps with 

devices such as the Microsoft Kinect, there has been a recent in- 

crease in research using 3D features ( Han et al., 2013 ). Leverag- 

ing 3D cameras solves the problem of separating the action sub- 

ject from the video background, and also eliminates irrelevant in- 

formation such as illumination variance. Recently, due to the work 
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of Shotton et al. (2013) , we have access to low-dimensional skele- 

tons mapped to the human body. Out of the box, these skeletons 

are much more discriminative than the raw high-dimensional RGB- 

D data and allow the development of efficient methods for action 

recognition. However, while the 3D skeletons provide means of al- 

leviating the action recognition task, they also provide new chal- 

lenges due to unstable joint positions resulting from tracking er- 

rors in the noisy depth maps. 

A recurring question in machine learning is the one of how to 

best represent objects for handling the pattern learning task. Gen- 

erally, the approaches to this problem can be divided into two: 

statistical and structural ( Bunke and Riesen, 2012 ). While statis- 

tical methods have received a great deal of attention in the past 

years, we ask ourselves if objects are not better represented by 

an explicit structure suitable to the task at hand. Actions are typi- 

cally defined by a sequence of interactions between several interest 

points ( Johansson, 1973 ). E.g. “draw circle”: 

1. Move hand towards left side of waist. 

2. Move hand up. 

3. Move hand down towards right side of waist. 

4. Move hand down towards feet. 

Naturally, a good descriptor for action recognition needs to cap- 

ture interactions between different parts of the body, all of which 
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also vary temporally during the duration of the action. While most 

existing action recognition methods from depth maps capture such 

interactions ( Luo et al., 2013; Oreifej et al., 2013; Wang et al., 2012; 

Wang and Wu, 2013; Zhao et al., 2013 ), most of them are inher- 

ently view-dependent. That is, their performance depend on the 

camera angle from which the action was recorded. Cross-view ac- 

tion recognition is the task of recognizing an action independent of 

the camera angle used for recording the video. For RGB videos, this 

has previously been explored to some extent ( Farhadi and Tabrizi, 

2008; Li et al., 2012; Li and Zickler, 2012; Parameswaran and Chel- 

lappa, 2006; Rahmani and Mian, 2015; Rao et al., 2002; Weinland 

et al., 20 07; 20 06; Yilmaz and Shah, 20 05; Zhang et al., 2013; 

Zheng and Jiang, 2013 ). For depth maps, however, the number of 

methods that apply to cross-view action recognition from pure 3D 

data are much fewer ( Rahmani et al., 2014; Wang et al., 2014a; Xia 

et al., 2012 ). This despite the added advantage of being able to per- 

form action recognition without compromising the identity of the 

user, which is essential for health care applications. 

In this work, we consider to use graphs to represent actions due 

to the following reasons. First, a graph provides a natural struc- 

ture for representing interactions between interest points. Fur- 

thermore, since graphs naturally capture pair-wise information, a 

graph-based representation is inherently view-invariant provided 

that this holds for the signal defined on the vertices. This is our 

motivation for exploring the usage of graphs for action recognition. 

In real life problems, graphs can be found everywhere. They 

occur in forms of e.g. social- and transportation networks, finite 

state machines, and also in domains such as brain fMRI and com- 

puter graphics ( Shuman et al., 2013 ). Recent approaches for us- 

ing graphs in machine learning include graph kernels ( Bunke and 

Riesen, 2011; Hermansson et al., 2013; Shervashidze et al., 2011; 

Stumm et al., 2016; Zhu et al., 2006 ), generalizations of signal pro- 

cessing frameworks to the graph domain ( Shuman et al., 2013; 

Sandryhaila and Moura, 2013 ), and also graph wavelets ( Coifman 

and Maggioni, 2006; Crovella and Kolaczyk, 2003; Hammond et al., 

2011; Narang and Ortega, 2012; Ram et al., 2011 ). 

Graph signal processing allows signal propagation that follows 

the natural structure of objects, and applications include edge- 

aware image processing ( Narang et al., 2012 ), depth video cod- 

ing ( Kim et al., 2012 ), image compression ( Sandryhaila and Moura, 

2012 ), anomaly detection in wireless sensor networks ( Egilmez 

and Ortega, 2014 ), bridge structure health monitoring ( Chen et al., 

2014 ), brain functional connectivity analysis ( Leonardi and Van 

De Ville, 2011 ) and mobility pattern prediction ( Dong et al., 2013 ). 

Our interest in using graph signal processing for human action 

recognition lies in the graph frequency information it is able to 

provide. As our results will show in this paper, using generaliza- 

tions of wavelet transforms to graphs allows us to capture multi- 

scale information about the interactions between depth map in- 

terest points along with their temporal propagation, leading to an 

efficient method for classifying a wide range of actions. 

In this paper, we propose a system for view-invariant depth 

map action recognition based on graph signal processing tech- 

niques. Our framework leverages a novel graph representation 

of an action as a temporal sequence of graphs. Specifically, our 

method takes depth map interest points and embeds these on an 

augmented graph describing said points’ temporal progression. Ex- 

tending a preliminary study on this subject ( Kerola et al., 2014 ), we 

investigate two types of interest points: 

• Tracked skeleton joints, which capture subject pose and pro- 

vides a semantic labeling of body parts. 
• Spatio-temporal keypoints, which capture human-object inter- 

action and other fine intrinsic detail. 

We define view-invariant graph signals based on the above in- 

terest points, and we represent them using a novel graph represen- 

tation that is shown to out-perform more classic representations, 

such as bag-of-words (BoW) ( Salton and McGill, 1986 ) combined 

with a support vector machine (SVM) ( Chang and Lin, 2011 ). Par- 

ticularly, we leverage the spectral graph wavelet transform (SGWT) 

framework of Hammond et al. (2011) for creating a multi-scale 

representation of the interest points. Graph wavelets capture in- 

formation about a signal at different scales, in several dimensions 

on the augmented temporal graph; both between interest points 

and along time. Further, spectral graph wavelets offer more flexi- 

bility than classical wavelets due to the freedom of graph design. 

To capture the sequential behavior of actions, we utilize a tem- 

poral pyramid pooling scheme ( Gowayyed et al., 2013; Luo et al., 

2013; Wang et al., 2012 ) on the wavelet coefficients. This improves 

over approaches that consider only global information ( Li et al., 

2010; Yang et al., 2012 ), since it allows us to capture differently 

segmented levels of temporal dependencies. Classification is finally 

performed using an off-the-shelf SVM. 

Our proposed method has the following advantages: 

• The underlying graph has an explicit block sparsity structure, 

which we exploit to create a memory-efficient algorithm for 

calculating the SGWT (see Section 4.3.1 ). 
• The feature’s underlying spectral basis is mathematically well 

defined ( Hammond et al., 2011 ), enabling analysis about each 

part of the descriptor. On the contrary, methods based on 

e.g. sparse coding ( Luo et al., 2013 ) or deep learning ( Rahmani 

and Mian, 2015 ) produce bases that are not easily analyzable 

(see Section 4.9 ). 
• For skeleton-based graphs, the number of interest points N 

is small, making the method efficiently computable in O( T N ) 

time, where T is the number of frames, making it more compu- 

tationally efficient than approaches that rely on solving heavy 

optimization problems ( Luo et al. 2013; Wang and Wu 2013 ) 

(see Section 4.7 ). 
• For keypoint-based graphs, the descriptor is shown to capture 

more information than a baseline BoW-representation, which 

makes our method perform better using our spectral represen- 

tation (see Section 5 ). 

While this paper focuses on recognition of actions, the frame- 

work can in general be applied to any time series of graphs. 

The paper is organized as follows. Section 2 reviews re- 

lated research in action recognition and graph signal processing. 

Section 3 discusses how to represent actions as graphs. Our pro- 

posed method is then shown in Section 4 , with related experi- 

ments in Section 5 . Section 6 finally concludes the paper. 

1.1. Notation 

We use lower-case bold letters a = [ a (1) , . . . , a (n )] T to denote 

vectors, and a ( i ) denotes the i th element of a vector. We use upper- 

case bold letters A, B, C to denote matrices, with A( i, j ) referring 

to the element at the i th row and j th column of A . Let a n de- 

note the n th vector in a set of vectors. We use G = (V, E, W ) to 

denote an undirected graph with vertex set V = { v i } and edge set 

E = { e k : e k = (v i , v j ) ⇔ v i ∼ v j ; v i , v j ∈ V} and v i ∼ v j denotes that 

vertices i, j are connected by an edge. The weight matrix W stores 

the weight of an edge ( v i , v j ) in entry W( i, j ). 

2. Related work 

2.1. 3D action recognition 

The advent of cheap 3D cameras such as the Kinect has enabled 

a great performance increase for action recognition tasks ( Li et al. 

2010 ). The availability of RGB-D data has considerably eased the 

task of segmenting an actor from its background; something that 
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