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a b s t r a c t 

In this paper, we propose a 3D-2D framework for face recognition that is more practical than 3D-3D, 

yet more accurate than 2D-2D. For 3D-2D face recognition, the gallery data comprises of 3D shape and 

2D texture data and the probes are arbitrary 2D images. A 3D-2D system (UR2D) is presented that is 

based on a 3D deformable face model that allows registration of 3D and 2D data, face alignment, and 

normalization of pose and illumination. During enrollment, subject-specific 3D models are constructed 

using 3D+2D data. For recognition, 2D images are represented in a normalized image space using the 

gallery 3D models and landmark-based 3D-2D projection estimation. A method for bidirectional relight- 

ing is applied for non-linear, local illumination normalization between probe and gallery textures, and 

a global orientation-based correlation metric is used for pairwise similarity scoring. The generated, per- 

sonalized, pose- and light- normalized signatures can be used for one-to-one verification or one-to-many 

identification. Results for 3D-2D face recognition on the UHDB11 3D-2D database with 2D images under 

large illumination and pose variations support our hypothesis that, in challenging datasets, 3D-2D out- 

performs 2D-2D and decreases the performance gap against 3D-3D face recognition. Evaluations on FRGC 

v2.0 3D-2D data with frontal facial images, demonstrate that the method can generalize to databases 

with different and diverse illumination conditions. 

© 2016 Published by Elsevier Inc. 

1. Introduction 

Face recognition (FR) has been a key topic in computer vision, 

pattern recognition, and machine learning research, with exten- 

sions to perceptual, behavioral, and social principles. In parallel, 

FR technology has been advancing in terms of sensors, algorithms, 

databases, and evaluation frameworks. This increasing interest is 
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driven partly by the difficulty and challenges of the task (i.e., a 

complex, intra-class object recognition problem) and partly by a 

wide variety of applications involving identity management. Re- 

search challenges include (i) separating intrinsic from extrinsic ap- 

pearance variations; (ii) developing discriminative representations 

and similarity metrics; and (iii) discovering performance invari- 

ants across heterogeneous data and conditions. Application-wise, 

face is emerging as a powerful biometric, a high-level semantic for 

content-based indexing and retrieval, and a natural and rich com- 

munication modality for human-computer interaction. The existing 

frameworks for face recognition vary across approaches (e.g., data- 

driven, model-based, perceptual) or facial data domains (e.g., im- 

ages, point clouds, depth maps). 

Methods for image-based FR have been pushing performance 

boundaries on nearly-frontal-view faces and constrained illumi- 

nation conditions ( Abate et al., 2007 ). However, the appearance 

of 2D images, under real-life and realistic acquisition conditions, 

is affected by extrinsic and identity-independent factors, such 

as variations in pose/viewpoint, illumination, facial expressions, 

time-lag, and occlusions (partial-data). In challenging, image “in 

the wild” benchmarks ( Wolf et al., 2011 ), state-of-the-art perfor- 

mance depends on face pre-alignment, combining representations, 

or large-scale training. To alleviate extrinsic variability, increase the 
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discriminative ability, and boost the performance of conventional, 

image-based methods, alternative facial modalities, and sensing 

devices have been considered. 

Three-dimensional recognition, from depth images, depth point 

clouds, or 3D meshes, has emerged as a distinct principle in bio- 

metrics and face recognition research ( Abate et al., 2007; Bowyer 

et al., 2006 ), driven by improved 3D sensors, publicly available 

databases, and systematic evaluation benchmarks like the Face 

Recognition Grand Challenge (FRGC) ( Phillips et al., 2005 ) and Face 

Recognition Vendor Test (FRVT) ( Phillips et al., 2010 ). In these 

frameworks, which explored the feasibility of using 3D data both 

for enrollment and recognition, the 3D-based algorithms demon- 

strated a potential for very high recognition rates. For example, on 

FRGC v2.0, the 3D-3D face recognition system by Kakadiaris et al. 

(2007) reported a 97.5% rank-1 recognition and an average verifi- 

cation rate of 97.1% at 0.001 false acceptance rate ( Ocegueda et al., 

2011b ), and the system of ( Wang et al., 2010 ) 98.3% and 98.13%, 

respectively. Ocegueda et al. (2011a ) achieved state-of-the-art per- 

formance both in FRGC v2.0, with 99% identification and 98% veri- 

fication rate, and in the challenging 3D Twins Expression database 

(3DTEC) ( Vijayan et al., 2011 ). 

As an alternative, an asymmetric recognition system may in- 

volve 3D data for enrollment and 2D for verification or identifica- 

tion (3D-2D) or, the converse, 2D data for gallery and 3D data for 

probes (2D-3D). In the former, the need for 3D acquisition hard- 

ware is restricted to enrollment only and can facilitate the acquisi- 

tion, storage, and distribution of high-quality databases of 3D mod- 

els. In the latter, the abundance of existing face databases, com- 

posed primarily of 2D images, can provide reference enrollment 

sets for matching new 3D data. Independently, 3D model-based 

facial signatures are more discriminative and robust to condition 

variations. In this work, we propose a 3D-2D recognition frame- 

work which makes use of 3D data for enrollment, while requiring 

only 2D data for recognition, and which can be readily applied to 

the 2D-3D case also. 

From the 3D gallery data, we build subject-specific, non- 

parametric 3D facial models by fitting a deformable Annotated 

Face Model (AFM) ( Kakadiaris et al., 2007 ). The model surface 

parametrization defines a canonical 2D representation, the geome- 

try image, that enables texture values assignment to correspond- 

ing 3D model points ( Theoharis et al., 2008 ). A probe 2D im- 

age is mapped onto a subject-specific gallery model by explic- 

itly accounting for relative pose and camera parameters using 

point-landmark correspondences ( pose estimation ). The estimated 

3D-2D projection transformation is employed to generate pose- 

normalized texture images from the 2D image data and 3D model 

points ( texture lifting ). For matching, probe and gallery textures are 

lifted using the same 3D model. Their lighting conditions are fur- 

ther normalized using an illumination transfer method based on an 

analytical reflectance model ( texture relighting ). The final matching 

score between relit gallery and probe textures is a global similarity 

value obtained from low-level local orientation features. 

Compared to asymmetric or heterogeneous recognition meth- 

ods that map features across different modalities, the developed 

3D-2D framework (termed UR2D) relies on a modality synergy, in 

which a 3D model is used for registration, alignment, and pose- 

light normalization of 2D image and texture data. Compared to 

previous approaches for 3D-2D registration and fitting ( Gu and 

Kanade, 2006 ), UR2D employs the 3D shape information for re- 

lighting (using surface normal information) and score computation 

(extracting signatures in the geometry image space). Compared to 

existing multimodal 2D+3D methods ( Jahanbin et al., 2011; Mian 

et al., 2007 ), UR2D integrates facial data across modalities and 

across enrollment/recognition phases in a subject-specific manner. 

In addition, unlike existing 3D-aided 2D recognition methods that 

use a 2D image to infer a 3D gallery model ( Romdhani et al., 2006 ), 

UR2D is based on personalized gallery models constructed by fit- 

ting a model on the actual 3D facial data. 

Our contributions can be summarized as follows: (i) we de- 

scribe a conceptual framework for 3D-2D (or 2D-3D) face recog- 

nition; (ii) we propose a novel 3D-2D system for face image verifi- 

cation and identification from 3D datasets; (iii) we advocate the 

use of 2D+3D data to build subject-specific 3D gallery models 

that allow for personalized, texture-based similarity scores; (iv) we 

propose a method for model-based texture representation and a 

relighting algorithm for illumination normalization that improves 

recognition under lighting variations; and (v) we demonstrate em- 

pirically that 3D-2D recognition surpasses 2D-2D on challenging 

2D+3D data with pose and illumination variations, and can approx- 

imate 3D-3D, shape-based similarity methods. 

2. Related work 

3D-2D and 3D-aided 2D face recognition: Recognition with 

3D data spans an extensive body of work in 3D, 2D+3D ( Bowyer 

et al., 2006 ), and 3D-aided 2D ( Abate et al., 2007 ) FR. Rama et al. 

(2006) presented a method for simultaneous pose estimation and 

2D face recognition that uses 3D data for training, though as 

a cylindrical texture image representation and not a full shape 

model. Riccio and Dugelay (2007) proposed using geometric in- 

variants on the face to establish a correspondence between the 3D 

gallery face and a 2D probe image, disregarding the texture reg- 

istered with the 3D data. Yin and Yourst (2003) used frontal and 

profile 2D images to construct models for 3D-based recognition. 

Blanz and Vetter (2003) introduced the 3D morphable model that 

captures face geometry and texture from 2D images. Using a statis- 

tical 3D face model and point correspondences, a gallery model is 

built from a 2D image. This is in principle different from our work, 

which uses real 2D and 3D data to build a 3D subject-specific 

gallery model. The morphable model framework was adopted for 

3D-model-based 2D face recognition under illumination and pose 

variations ( Romdhani et al., 2006 ), in fitting, synthesis, or nor- 

malization approaches ( Zhang et al., 2014 ). Wang et al. extended 

it for a spherical harmonic representation ( Wang et al., 2009 ). In 

contrast, methods for asymmetric 3D-2D FR learn a mapping be- 

tween 3D and 2D data. Huang et al. (2010) map features extracted 

from gallery range images (2.5D) to 2D for 2D-matching of texture 

probe images. An extension, based on pose-light normalization and 

a mid-level representation, is reported to attain 95.4% recognition 

rate on FRGC v2.0 ( Zhang et al., 2012 ). 

3D face models from 2D images: In 2D-based methods, fa- 

cial surface reconstruction from single or multiple images has 

been approached through stereo, structure-from-motion ( Bregler 

et al., 20 0 0 ), photometric-stereo ( Georghiades et al., 2001 ), and 

shape-from-shading methods ( Atick et al., 1996; Kemelmacher- 

Shlizerman and Basri, 2011 ) by estimating depth values from ge- 

ometric, photometric, and gradient properties. Given a 3D proto- 

type, reconstruction from images is obtained by fitting the model 

to 2D (i.e., estimating model parameters from image and geomet- 

ric constraints) ( Lee and Ranganath, 2003; Levine and Yua, 2009; 

Park et al., 2005 ). A model can be constructed from facial sample 

collections or prior knowledge on facial properties and physiology, 

and may be sparse to the number of points (i.e., point distribu- 

tion models) or dense (i.e., vertex points with surface parametriza- 

tion). Examples include shape-subspace projections, such as ac- 

tive appearance models ( Matthews et al., 2007 ) and 3D mor- 

phable models ( Blanz and Vetter, 2003 ), statistical deformable 

models ( Kakadiaris et al., 2007; Mpiperis et al., 2008 ), elastic 

models ( Prabhu et al., 2011 ), or reference samples ( Kemelmacher- 

Shlizerman and Basri, 2011 ). Gu and Kanade (2006) fit a sparse set 

of surface points and the associated texture patches and simul- 

taneously estimate deformation parameters and pose, requiring a 
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