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a b s t r a c t 

Considering vessel segmentation as an iterative tracking process, we propose a new Bayesian tracking al- 

gorithm based on particle filters for the delineation of coronary arteries from 3D computed tomography 

angiograms. It relies on a medial-based geometric model, learned by kernel density estimation, and on a sim- 

ple, fast and discriminative flux-based image feature. Combining a new sampling scheme and a mean-shift 

clustering for bifurcation detection and result extraction leads to an efficient and robust method. Results on a 

database of 61 volumes demonstrate the effectiveness of the proposed approach, with an overall Dice coeffi- 

cient of 86.2% (and 92.5% on clinically relevant vessels), and a good accuracy of centerline position and radius 

estimation (errors below the image resolution). 

© 2015 Elsevier Inc. All rights reserved. 

1. Introduction 

In biomedical applications, vascular structures are often of crit- 

ical importance for diagnosis, treatment and surgery planning. Ves- 

sels are thin, elongated and complex structures embedded in increas- 

ingly large images. Manual delineation, although still heavily used in 

clinical routines, has become a considerable burden and automatic or 

semi-automatic segmentation remains challenging. 

Vascular segmentation has received considerable attention in the 

literature [41] . A popular approach is to consider the segmenta- 

tion as an iterative, tracking process. Classical region-growing tech- 

niques can be seen as primitive representatives of this class of 

methods. Front propagation techniques allow for a refined analy- 

sis by imposing a structurally coherent exploration process. The ro- 

bustness of local deterministic tracking is generally limited by the 

necessity of using low-level causal criteria. In some settings, the 

tracking problem has been formulated as the extraction of globally 

optimal paths [11,43,46] . Another approach, which is increasingly 
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popular, is the use of stochastic Bayesian tracking algorithms such 

as particle filters [1,16,17,42,4 9,52,54,55,62–64,6 8] . Such algorithms 

have demonstrated particular robustness while allowing for high- 

level modeling. 

In this paper, we propose a new Bayesian, stochastic tracking al- 

gorithm for the delineation of coronary arteries from 3D Computed 

Tomography Angiograms (CTA). Our approach is inspired by recent 

developments in particle filtering designs [1,16,17,42,52,54] . It relies 

on a medial-based geometric model and on a simple, fast and dis- 

criminative flux-based image feature [44] , described in Section 3 . The 

proposed method includes the following contributions: 

• the design of a geometric vascular model described in Section 2 ; 
• the introduction of a non-parametric Bayesian model, learned by 

kernel density estimation [56] from a ground-truth database of 

manually segmented datasets ( Section 4 ); 
• the design of a new sampling scheme, Adaptive Auxiliary Particle 

Filtering (AAPF), described in Sections 6 and 7 after briefly recall- 

ing the bases of particle filters in Section 5 ; 
• the use of mean-shift clustering [9,21] for bifurcation detec- 

tion and coronary tree extraction, along with the proposal of 

algorithmic refinements for increased computational efficiency 

( Section 7 ). 
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Fig. 1. Discrete medial-based geometric model (see text for notations). 

A series of experiments is presented in Section 8 , illustrating the- 

oretical and practical properties of our approach, along with qualita- 

tive and quantitative evaluation on clinical data. 

2. Geometric model 

In this work, we chose to model vascular structures using a medial 

representation inspired by general shape models such as the Medial 

Axis Transform (MAT) from [4,5] and the Smoothed Local Symmetry 

(SLS) model from [6] . The main idea behind medial models applied 

to 3D elongated structures such as vessels is to represent the shapes 

of interest through their main axis, the centerline curve lying at the 

center of the vessel ( Fig. 1 ). 

We combine centerline- and cross-section-based information to 

constrain and reduce the parameter space with a particular discrete 

parameterization, illustrated in Fig. 1 . Cross-sections, defined in lo- 

cally orthogonal planes along the curved centerline, are assumed to 

be circular. This hypothesis is reasonable for the description of small 

scale vessels such as coronary arteries and enables straightforward 

parameterization. The centerline curve is discretized as a series of 

centerline points { p t } t=0 , ... ,L , with associated radius values and tan- 

gential direction vectors, noted { r t } and { d t }, respectively. Radius val- 

ues and tangent directions define cross-sectional contours. A vascular 

segment is modeled as a series of triplets x 0: L = { (p t , r t , d t ) } t=0 , ... ,L . 

Individual elements x t = (p t , r t , d t ) are used as the state variables of 

the vessel model being optimized during the tracking process. We 

assume an order on the states, denoted by subscripts t ∈ [[0 , L ]] . For 

coronary arteries, a natural ordering is from the ostium x 0 (origin of 

the artery branching off the aorta) to their distal ends x L . Tangential 

directions { d t } are defined thanks to control points { c t }: d t = 

c t −c t−1 ‖ c t −c t−1 ‖ . 
To further constrain our geometric model, we propose to link the 

positions of centerline and control points, indirectly coupling center- 

line points and tangent directions, as: 

p t = 

c t + c t−1 

2 

(1) 

This scheme, closely related to cardinal spline models, can be viewed 

as an artificial parameterization simplifying the formulation of our 

model and reducing its dimensionality. It makes possible a stable 

definition of tangential directions even in areas of high curvature. 

By doing so, control points constrain both the definition of tangen- 

tial directions and the discretization of the centerline curve. States 

x t = (p t , r t , d t ) of our model can be described alternatively as x t = 

(c t−1 , c t , r t ) given control points and radiuses, both being equivalent. 

The overall dimensionality of our model is thus limited to 4D (3D con- 

trol point locations + radius values). 

By convention, we consider that the first centerline point p 0 is 

fixed and that the first tangential direction d 0 is defined solely by c 0 . It 

is equivalent to considering an implicit control point c −1 = 2 p 0 − c 0 . 

Whenever needed, centerline points and corresponding tangents can 

be used to conveniently interpolate the centerline curve, e.g. using 

cubic Hermite splines. 

Fig. 2. Flux image feature. Discretized cross-sectional pattern defined by parameters 

( p , r flux , d ), with r Flux the test radius. For each x i , the gradient vector ∇I ( x i ) is projected 

on the inward radial direction, u (x i ) = 

p−x i ‖ p−x i ‖ . 

One key parameter of our model is the spacing between succes- 

sive control points s = ‖ c t−1 − c t ‖ . This discretization step directly 

impacts the expressive power of the model. As it gets smaller, the 

model is able to depict accurately highly curved vessels. In this work, 

we used a fixed discretization step of the order of the data intra-slice 

resolution (0.3mm) to provide an accurate description of typical coro- 

nary arteries. 

3. Flux-based vessel-dedicated feature 

To feed our geometric model with image information, we employ 

a fast, discriminative image feature, referred to as MFlux [44] . This 

feature exploits gradient flux for the detection of elongated structures 

with circular cross-sections. 

As demonstrated in [12,31,35,60] , flux-based segmentation meth- 

ods are well adapted for the extraction of thin, low-contrast vessels. 

They exploit the orientation of the gradient vectors by computing the 

gradient flux through the surface of the extracted object. For CTA im- 

ages, we assume that vessels are hyper-intense, and maximize the in- 

ward flux through the circular cross-sections of the model. For slowly 

narrowing or widening vessels, the radial directions give a reason- 

able approximation of the local normals to the surface (see Fig. 2 ). 

After equi-angular discretization of the cross-section (orthogonal to 

d ) perimeter with radius r into N points x i , we obtain the following 

cross-sectional flux measure: 

Flux (p, r, d) = 

1 

N 

N ∑ 

i =1 

〈∇I(x i ) , u i 〉 (2) 

with ∇I ( x i ) the gradient vector at point x i and u i = 

p−x i | p−x i | the inward 

radial direction as defined in Fig. 2 . Being a linear feature, Flux ( p , r , d ) 

is prone to false positive high-values at step-edges, as already men- 

tioned by [38] . In our case, this behavior is particularly problematic 

along the heart chambers. A non-linear combination was therefore 

proposed to pair diametrically opposed points (x i , x 
π
i 
) and retain the 

minimal flux contribution per pair, similarly to what was done in 2D 

by [38] . The MFlux feature is defined as: 

MFlux (p, r, d) = 

2 

N 

N 
2 ∑ 

i =1 

min (〈∇I(x i ) , u i 〉 , 〈∇I(x πi ) , u 

π
i 〉 ) 

with x π
i 

= x N 
2 

+ i for an even number N of cross-sectional points. 

The implementation of MFlux is particularly straightforward and 

computationally efficient. In the present work, we used N = 8 cross- 

sectional points and employed tri-linear interpolation for the compu- 

tation of image gradient vectors. 

MFlux responses are used as image features and combined with 

model-based prior knowledge, within the Bayesian tracking model 

described in the next section. 

4. Bayesian vessel model 

Our geometric model defines a vessel as a discrete ordered chain 

of states x 0: L = { (p t , r t , d t ) } t=0 , ... ,L with p t the centerline points, r t the 

radius values and d t the local tangential directions. A particular chain 
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