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a b s t r a c t 

Estimation of response functions is an important task in dynamic medical imaging. This task arises for exam- 

ple in dynamic renal scintigraphy, where impulse response or retention functions are estimated, or in func- 

tional magnetic resonance imaging where hemodynamic response functions are required. These functions 

can not be observed directly and their estimation is complicated because the recorded images are subject to 

superposition of underlying signals. Therefore, the response functions are estimated via blind source separa- 

tion and deconvolution. Performance of this algorithm heavily depends on the used models of the response 

functions. Response functions in real image sequences are rather complicated and finding a suitable paramet- 

ric form is problematic. In this paper, we study estimation of the response functions using non-parametric 

Bayesian priors. These priors were designed to favor desirable properties of the functions, such as sparsity 

or smoothness. These assumptions are used within hierarchical priors of the blind source separation and de- 

convolution algorithm. Comparison of the resulting algorithms with these priors is performed on synthetic 

datasets as well as on real datasets from dynamic renal scintigraphy. It is shown that flexible non-parametric 

priors improve estimation of response functions in both cases. MATLAB implementation of the resulting al- 

gorithms is freely available for download. 

© 2015 Elsevier Inc. All rights reserved. 

1. Introduction 

Computer analysis of dynamic image sequences offers an oppor- 

tunity to obtain information about organ function without invasive 

intervention. A typical example is replacement of invasive blood sam- 

pling by computer analysis of dynamic images [1] . The unknown in- 

put function can be obtained by deconvolution of the organ time 

activity curve and organ response function. Typically, both the in- 

put function and the response functions are unknown. Moreover, the 

time-activity curves are also not directly observed since the recorded 

images are observed as superposition of multiple signals. The super- 

position arises e.g. from partial volume effect in dynamic positron 

emission tomography [2] or dynamic and functional magnetic res- 

onance imaging [3] or from projection of the volume into planar dy- 

namic scintigraphy [4] . Analysis of the dynamic image sequences thus 

requires to separate the original sources (source images, mean im- 

ages of active components) and their weights over the time forming 

the time-activity curves (TACs). The TACs are then decomposed into 

input function and response functions. Success of the procedure is 

dependent on the model of the image sequence. 
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The common model for dynamic image sequences is the factor 

analysis model [5] , which assumes linear combination of the source 

images and TACs. Another common model is that TAC arise as a con- 

volution of common input function and source specific kernel [6,7] . 

The common input function is typically the original signal from the 

blood and the role of convolution kernels vary from application area: 

impulse response or retention function in dynamic renal scintigra- 

phy [8] or hemodynamic response function in functional magnetic 

resonance imaging [9] . In this paper, we will refer to the source ker- 

nels as the response functions, however other interpretations are also 

possible. 

Analysis of the dynamic image sequences can be done with su- 

pervision of experienced physician or technician, who follows rec- 

ommended guidelines and uses medical knowledge. However, we 

aim at fully automated approach where the analysis fully depends 

on the used model. The most sensitive parameter of the analysis 

is the model of the response functions (i.e. the convolution ker- 

nels). Many parametric models of response functions have been pro- 

posed, including the exponential model [10] and the piece-wise lin- 

ear model [11,12] . An obvious disadvantage of the approach is that 

the real response function may differ from the assumed paramet- 

ric models. Therefore, more flexible class of models based on non- 

parametric ideas were proposed such as averaging over region [13] , 

temporal regularization using finite impulse response filters [14] , or 
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free-form response functions using automatic relevance determina- 

tion principle [15] . 

In this paper, we will study the probabilistic models of response 

functions using Bayesian methodology within the general blind 

source separation model [16] . The Bayesian approach was chosen for 

its inference flexibility and for its ability to incorporate prior infor- 

mation of models [17,18] . We will formulate the prior model for gen- 

eral blind source separation problem with deconvolution [15] where 

the hierarchical structure of the model allow us to study various ver- 

sions of prior models of response functions. Specifically, we design 

different prior models of the response functions with more parame- 

ters then the number of points in the unknown response function. 

The challenge is to regularize the estimation procedure such that 

all parameters are estimated from the observed data. We will use 

the approximate Bayesian approach known as the Variational Bayes 

method [19] . The resulting algorithms are tested on synthetic as well 

as on real datasets and comparisons with parametric methods are 

provided. 

2. Probabilistic blind source separation with deconvolution 

In this Section, we introduce a model of dynamic image se- 

quences. Estimation of the model parameters yields an algorithm for 

Blind Source Separation and Deconvolution. Prior models of all pa- 

rameters except for the response functions are described here while 

the priors for the response functions will be studied in details in the 

next section. 

2.1. Model of observation 

Each recorded image is stored as a column vector d j ∈ R 

p×1 , j = 

1 , . . . , n, where n is the total number of recorded images. Each vec- 

tor d j is supposed to be an observation of a superposition of r source 

images a k ∈ R 

p×1 , k = 1 , . . . , r, stored again columnwise. The source 

images are weighted by their specific activities in time j denoted as 

x 1 , j , . . . , x r, j ≡ x j ∈ R 

1 ×r . Formally, 

d j = a 1 x 1 , j + a 2 x 2 , j + · · · + a r x r, j + e j = A x 

T 
j + e j , (1) 

where e j is the noise of the observation, A ∈ R 

p × r is the matrix com- 

posed from source images as its columns A = [ a 1 , . . . , a r ] , and symbol 

() T denotes transposition of a vector or a matrix in the whole paper. 

The Eq. (1) can be rewritten in the matrix form. Suppose the obser- 

vation matrix D = [ d 1 , . . . , d n ] ∈ R 

p×n and the matrix with TACs in its 

columns, X = [ x 
T 
1 , . . . , x 

T 
n ] 

T ∈ R 

n ×r . Note that we will use the bar sym- 

bol, x k , to distinguish the k th row of matrix X , while x k will be used 

to denote the k the column. Then, the Eq. (1) can be rewritten into the 

matrix form as 

D = AX 

T + E. (2) 

The tracer dynamics in each source is commonly described as con- 

volution of common input function, vector b ∈ R 

n × 1 , and source spe- 

cific response function (convolution kernel, mathematically), vector 

u k ∈ R 

n ×1 , k = 1 , . . . , r [10,11,20] . Using convolution assumption, each 

weight x k can be rewritten as 

x k = B u k , ∀ k = 1 , . . . , r, (3) 

where the matrix B ∈ R 

n × n is composed from elements of input func- 

tion b as 

B = 

⎛ ⎜ ⎝ 

b 1 0 0 0 

b 2 b 1 0 0 

. . . b 2 b 1 0 

b n . . . b 2 b 1 

⎞ ⎟ ⎠ 

. (4) 

Suppose the aggregation of response functions U = [ u 1 , . . . , u r ] ∈ 

R 

n ×r . Then, X = BU and the model (2) can be rewritten as 

D = AU 

T B 

T + E. (5) 

The task of subsequent analysis is to estimate the matrices A and 

U and the vector b from the data matrix D . 

2.1.1. Noise model 

We assume that the noise has homogeneous Gaussian distribu- 

tion with zero mean and unknown precision parameter ω, e i, j = 

N (0 , ω 

−1 ) . Then, the data model (2) can be rewritten as 

f (D | A, X, ω) = 

n ∏ 

j=1 

N (A x j , ω 

−1 I p ) , (6) 

where symbol N denotes Gaussian distribution and I p is identity ma- 

trix of the size given in its subscript. Since all unknown parameters 

must have their prior distribution in the Variational Bayes methodol- 

ogy, the precision parameter ω has a conjugate prior in the form of 

the Gamma distribution 

f (ω) = G(ϑ 0 , ρ0 ) , (7) 

with chosen constants ϑ0 , ρ0 . 

2.2. Probabilistic model of source images 

The only assumption on source images is that they are sparse, 

i.e. only some pixels of source images are non-zeros. The sparsity 

is achieved using prior model that favors sparse solution depending 

on data [21] . We will employ the automatic relevance determination 

(ARD) principle [22] based on joint estimation of the parameter of 

interest together with its unknown precision. Specifically, each pixel 

a i , k of each source image has Gaussian prior truncated to positive val- 

ues (see A.1 , denoted as tN in this paper) with unknown precision pa- 

rameter ξ i , k which is supposed to have conjugate Gamma prior as 

f (a i,k | ξi,k ) = tN (0 , ξ−1 
i,k 

) , (8) 

f (ξi,k ) = G(φ0 , ψ 0 ) , (9) 

for ∀ i = 1 , . . . , p, ∀ k = 1 , . . . , r, and φ0 , ψ 0 are chosen constants. The 

precisions ξ i , k form the matrix � of the same size as A . 

2.3. Probabilistic model of input function 

The input function b is assumed to be a positive vector; hence, it 

will be modeled as truncated Gaussian distribution to positive values 

with scaling parameter ς ∈ R as 

f (b | ς ) = tN (0 n, 1 , ς 

−1 I n ) , (10) 

f (ς ) = G(ζ0 , η0 ) , (11) 

where 0 n , 1 denotes zeros matrix of the given size and ζ 0 , η0 are cho- 

sen constants. 

2.4. Models of response functions 

So far, we have formulated the prior models for source images A 

and input function b from decomposition of the matrix D . The task 

of this paper is to propose and study prior models for response func- 

tions U as illustrated in Fig. 1 . Different choices of the priors on the 

response functions have strong influence on the results of the analy- 

sis which will be studied in the next section. 
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