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A B S T R A C T

This paper address the extraction of multiple models from outlier-contaminated data by exploiting prefer-
ence analysis and low rank approximation. First points are represented in the preference space, then Robust
PCA (Principal Component Analysis) and Symmetric NMF (Non negative Matrix Factorization) are used to
break the multi-model fitting problem into many single-model problems, which in turn are tackled with an
approach inspired to MSAC (M-estimator SAmple Consensus) coupled with a model-specific scale estimate.
Experimental validation on public, real data-sets demonstrates that our method compares favorably with
the state of the art.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Geometric multi-model fitting aims at extracting parametric
models from unstructured data in order to organize and aggre-
gate visual content in suitable higher-level geometric structures1.
This ubiquitous task can be encountered in many Computer Vision
applications, for example in 3D reconstruction, where it is employed
to estimate multiple rigid moving objects in order to initialize multi-
body structure from motion (e.g., [1]), or in the processing of 3D point
clouds, where planar patches are fitted to produce intermediate
geometric interpretations (e.g., [2]).

Several challenges are afoot. First, segmentation and estimation
tasks exhibit a chicken-and-egg pattern, for they are two closely
entangled aspects of the same problem: data should be segmented
based on their geometric proximity to structures whose unknown
parameters must be estimated at the very same time. In other words,
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1 The “structure” pertains to the arrangement and relations among the data, and it

is intrinsic to the data itself, whereas the “model” is the mathematical description of
the data that an observer fit onto them. Notwithstanding, we will use the two words
interchangeably.

in order to estimate models one needs to first segment the data, but
conversely, in order to segment the data it is necessary to know the
structures associated with each data point.

In addition, the presence of multiple structures hinders robust
estimation. Not only visual data are typically affected by arbitrar-
ily large measurement errors – and require the adoption of robust
estimators – but the multi-modality of the data makes the problem
even more demanding, as it is necessary to cope also with pseudo-
outliers, a concept introduced by Stewart [3] for describing those
measurements that do not match a model of interest because they
are inliers of a different structure.

Moreover, the problem is inherently ill-posed, since many differ-
ent interpretations of the same data are possible. Making the problem
tractablerequiresaregularizationstrategythatconstrainsthesolution
using prior information, usually in the form of one or more parame-
ters, such as the number j of sought structures. Following the Occam’s
razor principle – that one should not presume more things than the
required minimum – j should be kept as low as possible, but finding
a correct trade-off between data fidelity and model complexity (a.k.a.
bias-variance dilemma) is an intricate task, related to the model
selection problem. Unfortunately estimating this quantity turns to be
a thorny problem, and, for this reason, in many scenarios is assumed
known.

1.1. Outline

In this article we present an original method henceforth dubbed
RPA (robust preference analysis) which attempts to disentangle the
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chicken-and-egg nature of multiple structure recovery reducing it
to many single robust model estimation problems. In particular,
three main steps can be singled out: First, we employ M-estimator
to shift the problem into a conceptual space where data points are
depicted by the preference they have granted to a pool of tenta-
tive structures, instantiated via random sampling. Second, a robust
version of spectral clustering is presented: Robust Principal Com-
ponent Analysis and Symmetric Non negative Matrix Factorization
are employed to explicitly model the low rank nature of inlier pref-
erences, in order to produce an accurate soft-segmentation of data.
Third, this provisional segmentation is profitably combined with
the initial preference representation in a MSAC-like framework to
recover the sought structures. A noise scale estimate is computed
for each model, with the help of robust statistic.

The next section offers a perspective on the literature that is most
relevant to our work. Next (Section 2) our robust preference anal-
ysis method is detailed. In Section 2.1 we present the preference
representation, devoting Section 2.2 to address the problem of sam-
pling model hypotheses. In Section 2.3 we concentrate on the clus-
tering problem and in Section 2.3.1 we explain how Low Rank matrix
factorization techniques can be tailored to our preference embed-
ding, paving the way to Section 2.4 where the robust structure-
recovery strategy is described. Finally, in Section 3 we explore the
performance of our method on public real datasets. Appendix A
reviews some ideas, firstly emerged in the context of subspace
clustering, that are extended to our general multi-model fitting
problem.

1.2. Related work

The analysis of consensus and its dual counterpart, the analysis of
preferences, can be traced as a fil rouge linking the vast literature on
multi model geometric fitting. The consensus of a model is defined
as the set of data points that fit the model within a certain inlier
threshold 4; likewise, the preference set of a point is the set of models
to which that point is closer than 4.

Most of the multi-model fitting techniques proposed in the litera-
ture can be ascribed to one of these two concepts, according to which
horn of the chicken-egg-dilemma is addressed first. Consensus-
based algorithms put the emphasis on the estimation part and the
focus is on models that have to describe as many points as possi-
ble. On the other hand, preference approaches concentrate on the
segmentation side of the problem, for they are aimed at finding a
proper partition of the data, from which estimation follows. In this
section we attempt to retrace the path that, starting from consensus
throughout preference analysis, have been followed in the literature
to address the challenging issues presented by multiple structures
recovery.

1.2.1. Consensus analysis
Consensus-oriented methods start with a pool of provisional

model hypotheses, that are randomly instantiated on minimal sam-
ple sets (MSS), i.e., samples composed by the minimum number of
data points necessary to define a structure. Then the consensus sets
of the models are inspected, and the models that better explain the
data are kept. This idea is at the core of the well-known RANSAC
(Random Sample Consensus) algorithm and derivations, e.g., MSAC
(M-estimator Sample Consensus) and MLESAC (Maximum Likelihood
Estimation Sample Consensus) [4]. Many ameliorations of RANSAC
have been proposed in the literature, e.g. [5–8], most of which
have been surveyed in [9]. In the case of multiple models, Multi-
RANSAC [10] and its modifications [11,12] rely on the same principle;
also the usual Hough transform and its randomized version [13]
can be regarded as consensus-based algorithms, where models are

detected as consensus maxima in a quantized hypothesis space. The
approach presented in [14] combines random sampling, scale esti-
mation and Mean Shift to determine the consensus set when models
are multiple linear subspaces. More in general, maximizing the con-
sensus of models is the foundation of many optimization-based
geometric fitting algorithms [15].

1.2.2. Preference analysis
Preferenceanalysis, introducedby[16],alsostartwithapoolofpro-

visional model hypotheses, but it swaps the role of data and models:
rather than considering models and examining which points match
them, the preference sets of individual data points are inspected.
In particular, [17] build a conceptual space in which points are por-
trayed by the preferences they have accorded to provisional models.
Within this category, J-Linkage [17] and T-Linkage [18] share the same
first-represent-then-segment scheme: at first data are represented,
respectively, either as characteristic functions or as continuous ones
taking values on the hypothesized models, then the preference repre-
sentations are segmented by greedy bottom-up clustering, exploiting
either the Jaccard [19] or the Tanimoto [20] distances in order to
measure the agreement between preferences, and using the fact that
preferences of inliers from the same structure are correlated. This
“preference trick” is a very flexible mechanism that can be applied to a
wide varieties of scenarios requiring few assumptions on the desired
structures. It is sufficient to have at disposal an error function, aimed
at measuring residuals and then the structure recovery problem is
shifted in the preference space where it can be addressed using cluster
analysis.

Also RCMSA (Random Cluster Model Simulated Annealing) [21]
exploits this idea by representing data points as permutations
on a set of tentative models constructed iteratively, using sub-
sets larger than minimal. Point preferences are organized in a
weighted graph and the multi-model fitting task is stated as a
graph cut problem which is solved efficiently in an annealing
framework.

Multi-model fitting has been successfully cast as higher order
clustering problems [22–25], which implicitly adopt a preference
based approach. In these works higher order similarity tensors are
defined between n-tuple of points as the probability that these points
are clustered together. In practice, this measure is approximated
exploiting the residual error of the n points with respect to provi-
sional models; this preference information is encoded in a hyper-
graph or a multi-way order tensor, which are properly reduced to
pairwise similarity and fed to spectral clustering-like segmentation
algorithms.

For instance, Sparse Grassmann Clustering (SGC) [24], approxi-
mates the multi-way similarity tensor as the Gramian matrix defined
by the inner product of points in the preference space, hence, fol-
lowing the spirit of spectral clustering, projects the Gramian to
its best low rank approximation in a least square sense, using
Grouse [26]. At the end, the rows of this approximated matrix, are
considered as a new representation of the data points in a proper
low dimensional space, and are consequently segmented with k-
means.

Alternatively, instead of solving a point-point clustering problem,
one can formulate a point-model bi-clustering problem directly on
the preference hypergraph [27].

It goes without saying that the state-of-the-art on multi-
model fitting can be also described along other dimensions. For
example multiple structures recovery can be seen by an optimiza-
tion perspective as the minimization of a global energy functional
composed by two terms: a modeling error which can be inter-
preted as a likelihood term, and a penalty term encoding model
complexity mimicking classical MAP-MRF objectives. A survey of
multi-model fitting methods form this point of view can be found
in [15].
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