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ARTICLE INFO ABSTRACT

Great variances in visual features often present significant challenges in human action recognitions. To
address this common problem, this paper proposes a statistical adaptive metric learning (SAML) method by
exploring various selections and combinations of multiple statistics in a unified metric learning framework.
Most statistics have certain advantages in specific controlled environments, and systematic selections and
combinations can adapt them to more realistic “in the wild” scenarios. In the proposed method, multiple
statistics, include means, covariance matrices and Gaussian distributions, are explicitly mapped or gener-
ated in the Riemannian manifolds. Typically, d-dimensional mean vectors in R? are mapped to a Réxd space
of symmetric positive definite (SPD) matrices Sym;’. Subsequently, by embedding the heterogeneous mani-
folds in their tangent Hilbert space, subspace combination with minimal deviation is selected from multiple
statistics. Then Mahalanobis metrics are introduced to map them back into the Euclidean space. Unified opti-
mizations are finally performed based on the Euclidean distances. In the proposed method, subspaces with
smaller deviations are selected before metric learning. Therefore, by exploring different metric combina-
tions, the final learning is more representative and effective than exhaustively learning from all the hybrid
metrics. Experimental evaluations are conducted on human action recognitions in both static and dynamic
scenarios. Promising results demonstrate that the proposed method performs effectively for human action
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recognitions in the wild.
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1. Introduction

Set classification has been studied within computer vision com-
munities for a long period of time. In gait recognition, for example,
frame by frame static features of a certain object are considered as a
feature set. Similarly in human action recognition, Spatial-Temporal
features uniformly extracted from frames of an action atom are
considered as a feature set [1]. In addition, image sets have been
commonly used in face recognitions [2,3]. The task of feature set clas-
sification is to classify an input feature set to one of the sets in the
training gallery [4]. Compared to image sets, feature sets are more
diverse. They cannot be easily assumed to follow certain distribu-
tion or lie in some scale and affine invariant linear subspace. One of
the effective techniques handling such problem is by using statistical
representations to substitute the original feature samples. For action
recognition in the wild scenarios, combinations of statistics from
lower-order to higher-order have shown promising representation
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capabilities, while how to combine these multiple statistics in a near
optimal way remains a technical challenge [4,5].

In general, three types of statistics have been commonly applied
on set modeling, i.e. sample-based statistics (SAS) [6-9], subspace-
based statistics (SUS) [10-16] and distribution-based statistics
(DIS) [2,3]. Utilizing affine transformation and centroid of samples,
sample-based statistics represent d-dimension feature sets with
first-order statistics in the RY space. A great advantage of SAS is
that samples are considered as vectors so the nearest neighbor
(NN) classification can be easily implemented with unified dis-
tance measures. But sample tests performed at every individual
sample are often computationally expensive. Well-known sample-
based methods include Minimum Mean Discrepancy (MMD) [17],
Affine (Convex) Hull based Image Set Distance (AHISD, CHISD) [18],
Set-to-Set Distance Metric Learning (SSDML) [9] and Information
Theoretic Metric Learning (ITML) [19]. Differing from sample-based
statistics, subspace-based statistics analyze sets lying on a specific
Riemannian manifold. By learning the kernel functions or statis-
tical metrics, the subspaces are projected back to the Euclidean
spaces. The distance measures from the Riemannian manifold to the
Euclidean space is often considered as the true geodesic distances,
which lie in a Hilbert space [20]. Distance discriminant functions are
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then performed on the Hilbert space, and recognitions can finally
be achieved by using Nearest Neighbors (NNs) method. Second-
order statistic based methods have better representation of the
data, but it is hard to design a discriminant function with a uni-
fied distance measure for the manifolds. Typical subspace-based
methods include Mutual Subspace Method (MSM) [11], Discriminant
Canonical Correlations (DCC) [10], Manifold Discriminant Analysis
(MDA) [14], Grassmann Discriminant analysis (GDA) [13], Covari-
ance Discriminative Learning (CDL) [15], Localized Multi-Kernel Met-
ric Learning (LMKML) [16] etc. Distribution based statistic model
each sample in the feature set with a distribution, which can be
expressed as an expansion of the Riemannian manifold from the 2nd-
order statistic space Sym;r to Sym:{H. Such methods are often with
3rd-order statistics and may lead to complex parametric distribu-
tion comparison. Typical examples include Single Gaussian Models
(SGM) [2], Gaussian Mixture Models (GMM) [3] and kernel version
of ITML with DIS-based set model (DIS-ITML). Although 3rd-order
statistics model sets with more consolidated representations, the
hypothesis tests often require significant amount of computation in
distribution comparisons.

More adaptive forms of set modeling methods have been pro-
posed by combining multiple statistical metrics in certain heuristic
ways. Some of the recent hybrid statistical models include Pro-
jection Metric Learning (PML) on Grassmann manifold and hybrid
Euclidean-and-Riemannian Metric Learning (HERML) [21]. The main
idea of multiple statistic combination is to project measurements
from multiple heterogeneous spaces into high-dimensional Hilbert
spaces. The key issue then becomes the learning of unified discrim-
inant functions from the training sets. Due to the simplicity of the
subspace mapping, discriminant functions can frequently be found
from single statistics. For instance, Set-to-Set Distance Metric Learn-
ing (SSDML) learns a proper metric between pairs of single vectors in
Euclidean space to obtain more accurate set-to-set affine hull based
distance for classification; Localized Multi-Kernel Metric Learning
(LMKML) maps the 3rd-order statistics into Euclidean spaces by
learning a unified metric discriminant function through reproduc-
ing kernel Hilbert spaces (RKHS). While hybrid multiple statistics
perform well in realistic outdoor scenarios, their unified discrim-
inant functions are often more difficult to design. Addressing the
subspace discrimination problems, Shao et al. proposed a kernelized
multiview projection (KMP) for action feature set recognition. KMP
discriminatively assigns weights to multiple kernelized sets with
a single feature to achieve a low-dimensional subspace. However,
weighting kernels directly in the linear subspaces is not an optimal
way for learning kernelized sets with multiple features in different
scales [22].

Aiming at classification for sets with multiple features, this paper
proposes an adaptive subspace analysis method for learning hybrid
statistical metrics. The analyzed single or multiple statistics can be
used to classify sets through various feature combinations in dif-
ferent scales. Inspired by the discriminant function design in the
second-order based methods, LogDet divergence is introduced as
a unified discriminant function for our metric learning. With this
discriminant function, our method effectively unifies different statis-
tics into a common measurement. Thus nearest neighbor method can
be easily performed for classification. The whole process of modeling
and learning consists of several steps. Firstly, heterogeneous statis-
tics including mean, covariance matrix and Gaussian distribution are
introduced to project data into high-dimensional Hilbert spaces. Typ-
ically, d-dimensional mean vectors represent samples from R? to
SymJ expanded by a Point-to-Set projection; covariance matrices
lie in Riemannian manifold Sym;r and multivariate Gaussian distri-
butions expand the second order statistics into Riemannian mani-
fold Symj+1 expressed by relative entropy. Secondly, by embedding
the heterogeneous spaces into high-dimensional Hilbert spaces, the
Mahalanobis distance is introduced as our discriminant metric. Then,

the Hilbert space selection is conducted based on the minimum
Hilbert subspaces. The hybrid statistics are then reduced to single
or multiple statistic combination. Finally, with LogDet divergence
that maps all the Hilbert space points into R%, a constrained kernel
learning is performed. Recognitions are mainly conducted on video
sequences in both static and dynamic scenarios using spatial image
features such as edges, SIFT, HOG, and texture features.

2. Statistical feature set modeling
2.1. Statistics and subspace embedding

2.1.1. Data statistics

Let X = [Xj,...,Xn] denotes the training set formed by N feature
sets, where X; = [X1,X2,...,Xu] € R"%*? indicates the i-th feature set,
1 <i < N, and n; is the number of samples in this set. It is known that
the kernel function is always defined by firstly mapping the original
features to a high dimensional Hilbert space, that is ¢ : RY — For
Sym™ = F, and then calculating the dot product of high dimensional
statistics @; and @; in the new space. Considering ¢ as an explicit
mapping with the statistical kernels, ®] denotes the high dimen-
sional feature of r-th statistics extracted from the feature set X;. Here,
1 < r < Rand R is the number of statistics being used.

We uniformly map feature set X;,1 < i < N with follow-
ing three statistics: sample-based, subspace-based and distribution-
based statistics.

Sample-based statistics (SAS): Supported by Bregman diver-
gence, mean vector is considered as one of the important properties
describing the probability distributions. It is often used to measure
the central tendency of set of samples. Given sample x;, € X;, 1 < k <
M, the mean vector y; of X; is computed as: u; = % Zﬁ”:] Xk.

Subspace-based statistics (SUS): Within subspaces derived from
eigen-decomposition, set variances are influenced by covariant
matrix. Given sample x; € Xj, 1 < k < M, the covariant matrix C; of X;
is computed as: G; = g Sl (xk — 1)(xe — )"

Distribution-based statistics (DIS): Gaussian distribution is a very
commonly occurring probability distribution, which is a continuous
distribution with the maximum entropy for a given mean and vari-
ance. Therefore, the d-dimensional distribution of set X; is modeled
as a Single Gaussian Model (SGM) with an estimated d-dimensional
mean vector fitg;, 1 < k < d and a covariance matrix Cix~N (ﬁl,-, C).

2.1.2. Subspace embedding and canonical correlation-based selection

A point p in the Euclidean space R? can be mapped into a sym-
metrical positive definite matrix {uuT|RdXd, lupT| > 0t e Sym. For
DIS, the space of Gaussian distribution is able to be embedded into a
Riemannian manifold Symdtr1 [20].

Theorem 1. Let G = {y|dx|,x € RY} be a space of normal distribu-
tion, where |dx| is Lebesgue measure. Then its positive definite affine
space Aff]” has an explicit embedding Aff” — Symj , lying on the
Riemannian symmetric space Sly +1/SOq 41 -

Proof. Denote an affine group of G in R%: Affy = {(mQ)Ix —» Qx +
m,Q e Gg,m € R% acts transitively on G by y|dx] — (m,Q) ® y|dx|,
where ® denotes the transitive operator.

Assume yo|dx| = (2m)~9/2e= 7 X* |dx| as an standard Gaussian dis-
tribution on RY, where m=1(yoldx]) = Oy is a positive measure. The
transitive operation (m, Q) ® y|dx| can be explicitly written as

(m, Q) ® yldx| = (2m)~%/2(detQ)~Te~ 2127 (= gy, (1)

only when detQ > 0. Therefore, we add a restriction 6 to keep affine
group positive definite 6 : Aff; = {(m,Q)|detQ > 0}. Since the
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