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a b s t r a c t 

This article introduces the second generation of the Discrete Shapelet Transform (DST-II), a tool created 

for fusing three types of information: time, frequency and shape-related. Considered a particular Discrete 

Wavelet Transform (DWT), it allows a productive time-frequency-shape (TFS) joint analysis. In the pro- 

posed approach, both the procedure to attain the corresponding filters coefficients and the interpretation 

of the transformed signal are simplified in relation to the usage of its predecessor, i.e., the DST. Through- 

out the article, the DST-II formulation is described in detail, including a numerical example, a prototype 

for use in a diversity of fields and an application on spike and overlap sorting, reassuring the efficacy of 

the new transform. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Since Alfréd Haar, the father of wavelets, introduced funda- 

mental concepts in 1909 [1] and Ingrid Daubechies, the mother 

of wavelets, brightly consolidated them decades later [2] , the Dis- 

crete Wavelet Transform (DWT) [3] has been placed at the fore- 

front of signal analysis, fusing two types of information: tempo- 

ral and spectral. Through the years, many other scientists have 

published their relevant contributions to the field of wavelet the- 

ory. Palghat Vaidyanathan, Martin Vetterli, Stéphane Mallat, David 

Donoho, Gilbert Strang and others are examples of unforgettable 

names, just to mention a few. Additionally, our information fu- 

sion community has continuously presented DWT-based and DWT- 

inspired advances, as shown in [4–13] . 

In order to further evolve ordinary wavelet analysis, the Dis- 

crete Shapelet Transform (DST) was recently created and presented 

to the scientific community, as documented in [14] , in a previous 

cooperative work of mine. Exactly as the Discrete Wavelet Trans- 

form (DWT) does [15] , the DST allows the time-support of fre- 

quencies to be found, however, with a special advantage: concomi- 

tantly, it quantifies the degree of similarity between the signal 

under analysis and a pre-specified shape. Its work principle con- 

sists of a fractal-based criterion [16] used to redefine the original 
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Daubechies’ DWTs in such a way that a time-frequency-shape (TFS) 

joint analysis is performed. Thus, the DST fuses three types of in- 

formation: temporal, spectral and shape-related. 

On one hand, the original DST formulation demonstrated that 

TFS joint analysis is feasible. On the other, my objective this time 

is to improve that technique by defining the second generation of 

the transform, i.e., DST-II. Particularly, the new tool replaces the 

fractal-based criterion used for shape matching by a correlation- 

based formulation, favouring the solution of the non-linear system 

of equations that produces the filters coefficients and allowing a 

simplified interpretation of the transformed signal. Thus, the DST- 

II is better than its predecessor for joint TFS analysis, stimulating 

its usage in a diversity of fields. 

In suggesting possible future trends for the scientific com- 

munity, this paper is organised as follows. Supported by a 

short review on DSTs and the original Daubechies’ DWT, pre- 

sented in Section 2, Section 3 introduces the DST-II and its inverse 

(IDST-II). Proceeding, Section 4 shows a numerical example, while 

Section 5 describes the tests and results obtained during the anal- 

ysis of simulated and biological data and, lastly, Section 6 reports 

the conclusions that are followed by the references. Readers of this 

article are strongly encouraged to learn my previous piece on the 

original DST [14] before proceeding any further. 

http://dx.doi.org/10.1016/j.inffus.2017.07.004 
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2. A short review 

2.1. DSTs: the first generation 

A deep review on DSTs is superfluous due to the detailed de- 

scription presented previously in [14] . However, there are a few 

important points to be mentioned regarding the elements associ- 

ated with that transform. Similarly to the ordinary DWT, they are: 

• p [ · ] and q [ · ], so that q k = (−1) k p N−k −1 , form the quadrature 

mirror filter (QMF) [3] pair of finite impulse response (FIR) fil- 

ters [17] with support-size N ≥ 4 used for signal analysis, being 

N even. They present, respectively, low-pass and high-pass fre- 

quency responses with not necessarily linear phases [17] . Ac- 

cordingly, these are the filters used in conjunction with Mal- 

lat’s algorithm [18] to obtain the transformed signal from the 

input, exactly as in the original DWTs for which they are usu- 

ally known as h [ · ] and g [ · ]; 

• p̄ [ ·] , so that p̄ k = p N−k −1 , and q̄ [ ·] , so that q̄ k = (−1) k +1 
p k , form 

the pair of filters used for signal re-synthesis. In the scope of 

the DWT, they would be respectively known as h̄ [ ·] and ḡ [ ·] ; 
• �(x ) = 

∑ 

k p k �(2 N − k ) and �(x ) = 

∑ 

k q k �(2 N − k ) , respec- 

tively known as major shapelet and minor shapelet , correspond 

to scaling and wavelet functions of the DWT [3] , i.e., �( x ) and 

�( x ); 
• the conditions P̄ [ z] = Q[ −z] , Q̄ [ z] = −P [ −z] and P̄ [ z] P [ z] + 

Q̄ [ z] Q[ z] = 2 z −N+1 , all in Z domain [17] , imply that p[ ·] , q [ ·] , p̄ [ ·] 
and q̄ [ ·] form a perfect-reconstruction filter bank (PRFB) [3] . 

Particularly, the procedure to obtain the DST filter q [ · ] is the 

same used to generate the Daubechies’ filter g [ · ], as reviewed 

ahead, albeit with one difference: the former formulation replaces 

one vanishing moment condition from the latter by a fractal-based 

matching equation. The DST-II, however, is based on a different ap- 

proach. 

Complementarily, it is important to recall that the DST( s [ · ]) 

preserves the length of the input signal s [ · ], hereafter referred to 

as X , that is a power of 2. Furthermore, X allows for the decompo- 

sition until level j = 

(
log(X ) 
log(2) 

)
. Once s [ · ] is decomposed, two other 

signals with lengths X 
2 are produced: master and second-rated . The 

former and the latter result, respectively, from the convolution of 

s [ · ] with p [ · ] and the convolution of s [ · ] with q [ · ], both fol- 

lowed by a downsampling by 2 and a wrap-around procedure [18] . 

Lastly, the concatenation of master with second-rated characterizes 

the DST. From the former, the decomposition can continue recur- 

sively until reaching the highest possible level. DST-II inherits all 

the terminology and decomposition procedures from DST. 

2.2. The discrete Daubechies’ transform 

There are distinct ways to explain how the Daubechies’s 

wavelets [3] were constructed. Particularly, that of my current 

interest, which first produces the high-pass filter, i.e., g [ · ] with 

support-size N , and then generates the other elements, i.e., h [ · ], 

h̄ [ ·] , ḡ [ ·] , �( x ) and �( x ), based on it, will be reviewed here. The 

specific procedure is: 

• STEP Daub 1 : Force g [ · ] to have unitary energy so that the DWT 

preserves that of the input signal, i.e., 

N−1 ∑ 

k =0 

g k 
2 = 1 . (1) 

This condition is equivalent to others, as 
∑ N−1 

k =0 
h k = 

√ 

2 , imply- 

ing that the scaling function has one non-vanishing moment; 

• STEP Daub 2 : Impose N 
2 vanishing moments on the wavelet func- 

tion, i.e., 

N−1 ∑ 

k =0 

g k k 
b = 0 , (2) 

for b = 0 , 1 , . . . , N 2 − 1 ; 

• STEP Daub 3 : Define N 
2 − 1 orthogonality conditions related to 

the translations of the filter so that the transformation matrix 

used to carry out Mallat’s algorithm [18] is orthogonal, allowing 

signal re-synthesis based on its transpose: 

N−1 ∑ 

k =0 

g k g k +2 l = δ0 ,l , (3) 

being δ the Dirac delta and l ∈ Z; 
• STEP Daub 4 : Group together the only equation of step Daub 1 , 

the N 
2 equations of step Daub 2 and the N 

2 − 1 equations of step 

Daub 3 , resulting in a non-linear system of N equations in N un- 

knowns. Then, solve the system using any iterative numerical 

procedure, such as Gauss-Siedel, Jacobi or Newton’s methods 

[20] , to obtain the high-pass filter g [ · ]. 

• STEP Daub 5 : Obtain the filter h [ · ] so that h k = (−1) k +1 
g N−k −1 

in order to complete the analysis filter pair. If the inverse DWT 

(IDWT) is required, obtain the filters h̄ [ ·] and ḡ [ ·] , so that h̄ k = 

h N−k −1 and ḡ k = (−1) k +1 
h k , characterizing the re-synthesis fil- 

ter pair. Lastly, in order to discover the shapes of orthonor- 

mal basis associated with the analysis filter pair, as explained 

in [21] , obtain the scaling function �(x ) = 

∑ 

k h k �(2 N − k ) and 

the wavelet function �(x ) = 

∑ 

k g k �(2 N − k ) . 

3. The DST-II 

3.1. DST-II definition and formulation 

The components of the DST and the DST-II are just the same, 

i.e., p [ · ], q [ · ], p̄ [ ·] , q̄ [ ·] , �( x ) and �( x ). The easiest way to calcu- 

late them is to obtain, first, the analysis filter q [ · ] for which a few 

restrictions apply regarding the DST-II: 

1. the filter support-size is N ≥ 6. This is required due to the 

fact that the DST-II has N 
2 − 2 vanishing moments in its mi- 

nor shapelet, equivalently to the wavelet function, as detailed 

ahead. Therefore, N < 6 would produce no vanishing moment in 

such function, disturbing the proposed transform; 

2. the filter support-size is necessarily even, as in the DWT theory 

[3] , otherwise a perfect-reconstruction can not be achieved; 

3. the signal to be matched, m [ · ], representing the pattern to be 

identified by the DST-II, has necessarily an odd size equal to 

N + 1 . 

The particular procedure to determine q [ · ] is: 

• STEP Shp 1 : Force the filter to have unitary energy so that the 

DST-II preserves that of the input signal, i.e., 

N−1 ∑ 

k =0 

q k 
2 = 1 . (4) 

• STEP Shp 2 : Impose N 
2 − 2 vanishing moments for the major 

shapelet function, i.e., 

N−1 ∑ 

k =0 

q k k 
b = 0 , (5) 

for b = 0 , 1 , . . . , N 2 − 3 ; 
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