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a b s t r a c t 

Entropy ( H ) is the main subject of this article, concisely written to serve as a tutorial introducing two 

feature extraction (FE) methods for usage in digital signal processing (DSP) and pattern recognition (PR). 

The theory, carefully exposed, is supplemented with numerical cases, augmented with C/C ++ source- 

codes and enriched with example applications on restricted-vocabulary speech recognition and image 

synthesis. Complementarily and as innovatively shown, the ordinary calculation of H corresponds to the 

outcome of a partially pre-tuned deep neural network architecture which fuses important information, 

bringing a cutting-edge point-of-view for both DSP and PR communities. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

1.1. Objective and text structure 

This is the third in a set of tutorials I have recently published 

with the same objective: innovative usage of humble and well- 

known concepts for the benefit of both digital signal processing 

(DSP) and pattern recognition (PR) communities. The preceding 

texts, [23] and [24] , were respectively dedicated to the exploration 

of relevant aspects of energy by means of proposed methods A 1 , A 2 

and A 3 , and zero-crossing rates (ZCRs), according to the techniques 

introduced as B 1 , B 2 and B 3 . Successfully, I employed those formu- 

lations for neurophysiological signal analysis, texture characterisa- 

tion, text-dependent speaker verification, speech classification and 

segmentation, image border extraction and biomedical signal pro- 

cessing. Energy, that is used to express the potential to perform 

work, as well as ZCRs, which are commonly applied to elementary 

spectral content analysis, act disparately in correlation to entropy 

( H ) [13,70] , the feature explored in this article. 

Despite the emerging deep learning (DL) technologies em- 

ployed for automatic feature learning [22,34] , handcrafted fea- 

ture extraction (FE), i.e., the situation in which the system en- 

gineer chooses the appropriate features to be extracted from 

the signal under analysis, continues to play an important role 
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in DSP and PR. Particularly, I demonstrate that H , by itself, ob- 

tained based on two proposed approaches for FE from both 

unidimensional (1D) and bidimensional (2D) data, has flagrant 

potential, as also evidenced in relevant scientific articles pub- 

lished last year [11,17,20,42,50,51,53,81,84,86] and a few years ago 

[6,15,21,37,56,57,62,63,73,75,83] . Similarly to the characterization of 

ZCRs as neurocomputing agents [24] , H is shown to be the out- 

come of a specifically tuned deep neural network (DNN) that fuses 

important information, bringing an innovative point-of-view for 

both DSP and PR communities. Furthermore, experiments and ap- 

plications on restricted-vocabulary speech recognition and image 

synthesis reassure the efficacy of the proposed techniques. 

Compromised with a balance among creativity, simplicity and 

accuracy , exactly as in [23] and [24] , this paper is organised as 

follows. A review on H accompanied by some of its recent ap- 

plications is the theme of the next subsection. Section 2 , oppo- 

sitely, describes the proposed approaches in detail and my partic- 

ular point-of-view about H for both 1D and 2D signals. Proceeding, 

Section 3 presents some numerical examples which complement 

the theoretical explanations, easing their comprehension. Illustra- 

tive experiments and applications involving 1D and 2D signals can 

be found in Section 4 and, lastly, I conclude the paper. Following 

my previous rationale, as indicated in [24] -pp.1 with respect to ar- 

ticle [23] , I emphasise the importance of those articles, suggesting 

their readings beforehand for a better understanding of the ideas 

discussed herein. 

http://dx.doi.org/10.1016/j.inffus.2017.09.006 
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Fig. 1. The way normalisations should be interpreted for the example set s [ ·] = 

{ �, •, ◦, ◦, �, �, �, �} . UoS means “unit of space”. 

1.2. A review on entropy and its applications 

The records I found on the Web of Science website show that 

the first published article about H is dated from 1900 [82] . As sci- 

ence advances, H has been at the forefront of research in a diver- 

sity of fields such as general physics [39] , thermodynamics [10] , as- 

trophysics [8] , statistical mechanics [67] , genetics [65] , economics 

[46] and arts [1] . In order to understand its essence, focusing par- 

ticularly on the field of Information Theory, where the DSP and PR 

communities find utility [19,49] , the readers are first requested to 

reflect on the meaning of information [39] -pp.117, as follows. The 

exposition hereafter is inspired by the traditional article [68] pub- 

lished in 1948 by Claude Shannon 

1 , who is considered the father 

of Information Theory, and by additional respected bibliographical 

materials. 

Let p i = 

αi 
M 

= 

1 
(M/αi ) 

, (0 ≤ i < K ) and (0 ≤αi < M ), be the proba- 

bility [59] of the i th distinct datum , i.e., symbol, in a set s [ ·] = 

{ s 0 , s 1 , s 2 , . . . , s M−1 } of size M with K distinct symbols. Conse- 

quently, there are αi symbols within M matching the i th expec- 

tation or, equivalently, there is one among 1 
(M/αi ) 

. Specifically, the 

denominator ( M / αi ) represents the normalised number of possibil- 

ities for the i th symbol, with the normalisation interpreted in such 

a way that each subset of repeated elements is converted into an 

unique size representative of size equal to that of the entire subset. 

Furthermore, ( M / αi ) written based on a certain alphabet β pro- 

duces words for which the length corresponds to what we know 

as information . 

Assume, as an example, the 8-sample long set s [ ·] = 

{ �, •, ◦, ◦, �, �, �, �} . The probabilities of stars, bullets, circles and 

diamonds are, respectively, p 0 = 

1 
(M/α0 ) 

= 

1 
(8 / 1) 

= 

1 
8 , p 1 = 

1 
(M/α1 ) 

= 

1 
(8 / 1) 

= 

1 
8 , p 2 = 

1 
(M/α2 ) 

= 

1 
(8 / 2) 

= 

1 
4 and p 3 = 

1 
(M/α3 ) 

= 

1 
(8 / 4) 

= 

1 
2 . 

Thus, the corresponding normalised number of possibilities for 

each star, bullet, circle and diamond is (8 / 1) = 8 , (8 / 1) = 8 , 

(8 / 2) = 4 and (8 / 4) = 2 . Fig. 1 illustrates the physical meaning 

of the normalisations. Regarding the star, only one unit of space 

among eight is required for its placement; thus, there are eight 

possibilities to place it. The same holds true for the bullet. In rela- 

tion to both circles in the original set, the normalisation converts 

them in only one double-length circle and forces it to occupy two 

original units of space among eight; thus, there are four possible 

placements for the bigger circle. Lastly, the four original diamonds 

are converted, due to the normalisation, into only one larger 

1 Had he not passed away in 2001, Dr Shannon would have celebrated his 100 th 

birthday on April 30, 2016. 

diamond which occupies four original units of space, implying that 

there are only two possible placements for this enlarged symbol. 

When choosing the binary basis [30] , i.e., = 2 , as being the al- 

phabet, “0” and “1” are the only existing characters, known as bits, 

which compose the corresponding words. Particularly, 

• “0 0 0”, “0 01”, “010”, “011”, “100”, “101”, “110” and “111” are the 

2 3 = 8 possibilities for placing stars, implying that three bits 

are needed to express such locations; 
• “0 0 0”, “0 01”, “010”, “011”, “100”, “101”, “110” and “111” are also 

the 2 3 = 8 possibilities for placing bullets, which consequently 

require three bits to express such locations; 
• “00”, “01”, “10” and “11” are the 2 2 = 4 possibilities for placing 

circles, which require two bits to express such locations; 
• “0” and “1” are the 2 1 = 2 possibilities for placing diamonds, 

which require only one bit to express such locations. 

Instead of written and counted, the number of bits 

in each case may be easily calculated by means of the 

base β = 2 logarithms of the normalized possibilities ( [30] - 

pp.8), i.e., log β ( M 

α0 
) = log β ( 1 

p 0 
) = log 2 (8) = 3 , log β ( M 

α1 
) = 

l og β ( 1 
p 1 

) = l og 2 (8) = 3 , log β ( M 

α2 
) = log β ( 1 

p 2 
) = log 2 (4) = 2 and 

log β ( M 

α3 
) = log β ( 1 

p 3 
) = log 2 (2) = 1 . These values are the lengths, 

i.e., the number of bits, of the words in each case, which corre- 

spond to their information . 

Generally, log β ( 1 p i 
) expresses information in terms of the num- 

ber of elements required to write 1 
p i 

possibilities for placements 

based on alphabet β , i.e., 

the amount of information for the i th symbol is 

log β

normalised number of possibilities 

for the i th symbol ︷ ︸︸ ︷ (
1 

p i 

)
︸ ︷︷ ︸ 

information, i.e., number of elements required 

to write (1 /p i ) using alphabet β

. 

In order to obtain a global quantification for the information in 

the entire set s [ ·], the more natural procedure corresponds to the 

calculation of the weighted sum of the independent amounts of 

information, where the probabilities of occurrences are the respec- 

tive weights. Thus, 

H = 

K−1 ∑ 

i =0 

p i · log β

(
1 

p i 

)
. (1) 

Alternatively and taking into account the property of logarithms 

which states that log( 1 x ) = −log(x ) , ∀ x ∈ � 

+ , Eq. (1) may be rewrit- 

ten as 

H = −
K−1 ∑ 

i =0 

p i · log β (p i ) , 

that is the most traditional way used to express entropy. In our 

previous example, H = − ∑ K−1 
i =0 p i · log β (p i ) = −∑ 3 

i =0 p i · log 2 (p i ) 

= −((p 0 · log 2 (p 0 )) + (p 1 · log 2 (p 1 )) + (p 2 · log 2 (p 2 )) + (p 3 · log 2 (p 3 ))) 

= −(( 1 8 · log 2 ( 
1 
8 )) + ( 1 8 · log 2 ( 

1 
8 )) + ( 1 4 · log 2 ( 

1 
4 )) + ( 1 2 · log 2 ( 

1 
2 ))) 

= 

3 
8 + 

3 
8 + 

1 
2 + 

1 
2 = 

7 
4 bits. 

Deservedly also known as Shannon’s entropy, H may alterna- 

tively be understood as a measure of unpredictability of informa- 

tion content, whereas it equals zero upon a concrete and fully pre- 

dictable outcome, i.e., when K = 1 and p 0 = 1 . Particularly con- 

cerning our example, the unpredictability of the normalised dia- 

mond is the lowest: there are only two possible placements for it, 

as seen in Fig. 1 . In contrast, normalised circles have a higher un- 

predictability because there are four possible placements for them. 

Lastly, both normalised stars and bullets present the highest unpre- 

dictabilities amongst the symbols with eight possible placements. 
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