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a b s t r a c t 

The process of manually generating precise segmentations of brain tumors from magnetic resonance im- 

ages (MRI) is time-consuming and error-prone. We present a new algorithm, Potential Field Segmentation 

(PFS), and propose the use of ensemble approaches that combine the results generated by PFS and other 

methods to achieve a fused segmentation. For the PFS method, we build on our recently proposed cluster- 

ing algorithm, Potential Field Clustering, which is based on an analogy with the concept of potential field 

in Physics. We view the intensity of a pixel in an MRI as a “mass” that creates a potential field. Specifi- 

cally, for each pixel in the MRI, the potential field is computed and, if smaller than an adaptive potential 

threshold, the pixel is associated with the tumor region. This “small potential” segmentation criterion 

is intuitively valid because tumor pixels have larger “mass” and thus the potential of surrounding re- 

gions is also much larger than in other regions of smaller or no “mass”. We evaluate the performance of 

the different methods, including the ensemble approaches, on the publicly available Brain Tumor Image 

Segmentation (BRATS) MRI benchmark database. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The Internet of Things consists of a large number of diverse and 

spatially distributed sensors that collect and/or generate data. The 

fusion of such heterogeneous data facilitates the discovery of im- 

portant patterns and the subsequent understanding of the prob- 

lem or situation that is being monitored. In particular, clustering 

algorithms combine heterogeneous data into different groups or 

“clusters” and thus allow for the categorization/classification of the 

data. In this paper we consider the problem of clustering of image 

pixels based on their associated heterogeneous data values, i.e., vi- 

sual intensities, and the fusion of the multiple alternative segmen- 

tations generated by different clustering methods, for the purpose 

of automatic brain tumor segmentation from magnetic resonance 

images (MRI). 

In the medical imaging domain, delineating the extent of tis- 

sue abnormalities that appear in an image is a very common 

but critical task. However, doing this task manually is very time- 

consuming and error-prone. E.g., a study [1] found average varia- 

tions of 16%–40% between individuals performing the same brain 

tumor segmentation and average variations of 5%–35% within in- 

dividuals performing the segmentation three times at one-month 

intervals. As a result, the automatic segmentation of tissue abnor- 
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malities from medical images is a critical component of next gen- 

eration computer-aided diagnosis technologies. The objective is to 

develop automatic segmentation algorithms that can achieve re- 

sults that are comparable to those generated by medical experts, 

e.g., a neuroradiologist. 

MRI exploits the physical properties of the nuclear spin of hy- 

drogen to generate a digital representation of brain tissue. Because 

the human body is mostly made up of water (the brain in partic- 

ular is about 85% water), hydrogen, which is composed of a sin- 

gle proton, is the most abundant element. Under normal circum- 

stances, the nuclear spin of hydrogen is randomly orientated. How- 

ever, when placed in a strong magnetic field, such as that gen- 

erated by an MRI scanner, the nuclear spin aligns with the mag- 

netic field. If a radio wave frequency (RF) that matches the hydro- 

gen nuclear spin natural oscillation frequency is applied, the nu- 

clear spin moves out of alignment away from the magnetic field, a 

phenomenon known as resonance. If the RF source is switched off

the nuclear spin realigns with the magnetic field, a phenomenon 

known as relaxation, and causes a signal (also RF) to be emitted. 

Different tissues relax at different rates and different types of re- 

laxation times (T1, T2) are used as components of the signal. For 

instance, high water content, which is a common manifestation of 

a disease, appears as bright areas in a T2 MRI. 

In general, image segmentation is a hard problem for computers 

that requires both low-level and high-level object-specific knowl- 

edge. This has resulted in a situation where most previous work on 
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automated brain tumor segmentation is based on machine learn- 

ing, both supervised [2–10] and unsupervised [11–19] . Among the 

supervised methods, approaches include using Support Vector ma- 

chines [4,6] , Random Forests [2] , Bayesian classifier [7] , fractal fea- 

tures [8] , outlier detection [9] and Markov Random Fields [10] . The 

limiting factor of supervised learning methods is the amount of ex- 

pert input that is required in the form of, e.g., a priori information, 

hand-specified information on a set of training images, etc. 

Unsupervised learning can be formulated as a search for pat- 

terns in unlabeled data. With the unsupervised methods, the gen- 

eral routine is to establish local feature correspondences between 

sets of feature points in an input image and solve an optimization 

problem based on an objective function with particular constraints. 

However, some unsupervised methods such as [15,16] are not yet 

fully automatic and require manual human interaction. 

Among the unsupervised methods, clustering methods are very 

popular and differ from classification methods such as discriminant 

analysis in that classification involves a known number of groups 

and in that the operational objective is to assign a new observation 

to one of these clusters. On the other hand, cluster analysis makes 

no assumption about the number of clusters and ideally seeks to 

find the optimal number of clusters based on some objective func- 

tion. It is known that the final assignment of observations depends, 

to some extent, on the initial partition [20] . Because of its con- 

ceptual simplicity K -means is the best known and most commonly 

used clustering algorithm, which is reflected in the large number 

of methods, e.g., [11,18,19,21] , that are based on it or variations 

thereof. However, its performance depends heavily on the number 

of initial cluster centers and on the selection of the initial cluster 

centers. 

In [21] the Electrostatic Force Clustering algorithm [22] , a vari- 

ation of K -means, is employed for tumor localization in MRI. The 

algorithm, which is based on an analogy with the laws of elec- 

trostatics, is said to always converge to the same solution inde- 

pendently of different initial conditions, i.e., initial cluster centers. 

The direction of movement of the cluster centers is determined 

by the electrostatic force that affects them. When an electrostatic 

balance/equilibrium is obtained, the centers stop moving. Accu- 

rate localization (coarse detection) of the center of a tumor region 

is important, because it is typically a requisite landmark for the 

subsequent fine tumor detection process of identifying the precise 

boundaries of the tumor, e.g., the segmentation step. 

In [21] , after the center localization step, a region growing seg- 

mentation algorithm is employed with the seed initialized to the 

center found. In a region growing segmentation, starting from the 

initial seed point, each neighboring pixel (8-connected) is exam- 

ined and it is determined whether or not the pixel should be 

added to the tumor region. This process iterates recursively on 

each newly added pixel. The criterion that is used to determine 

whether or not a neighboring pixel belongs to the tumor region 

is based on the intensity of the pixel. In this paper, we refer to 

this combination of region growing segmentation with electrostatic 

force clustering for seed initialization [21,22] as the FOR method. A 

good choice of initial seed point is an important issue that has a 

critical impact on the segmentation performance of region grow- 

ing. Thus, the closer the initial seed point is to the true tumor 

center, the better the resulting segmentation. As we observed in 

[23] , the localization (and subsequent segmentation) performance 

of this algorithm is highly dependent on the value of a step size 

parameter α. 

Given a set of instances represented by points { r 1 , . . . , r n } , 
where r i ∈ R 

d , in the Electrostatic Force Clustering algorithm 

[21,22] , the points are assumed to be electrical charges, each with 

a position r i and a negative charge w i . A set of K cluster cen- 

ters { c 1 , . . . , c K } , where c i ∈ R 

d , is randomly initialized. Each clus- 

ter center c i is associated with the subset S ⊂ { r 1 , . . . , r n } of points 

that are the closest to it in the d -dimensional space. The corre- 

sponding total charge associated with c i is W i = 

∑ 

r j ∈ S w j . The 

cluster centers are allowed to move according to the laws of elec- 

trostatics. That is, their direction of movement is determined by 

the electrostatic force that affects them in the space. At each step, 

the total force affecting c i is 

f i = 

∑ 

r j 

W i w j 

r 2 
i j 

(c i − r j ) 

r i j 

+ 

∑ 

c j ,i � = j 

W i W j 

r 2 
i j 

(c i − c j ) 

r i j 

(1) 

where, in the first summation, r ij is the distance ‖ c i − r j ‖ and, in 

the second summation, r ij is the distance ‖ c i − c j ‖ . At each step, 

the new position of each c i is 

c (t+1) 
i 

= c (t) 
i 

+ α
f i 

‖ f i ‖ 

(2) 

where c (t+1) 
i 

is the next center position, c (t) 
i 

is the previous center 

position, α is a fixed step size and ‖ f i ‖ is a force unit vector with 

the direction of movement. 

In [21] , this clustering algorithm is used for tumor localization 

in MRI. More specifically, the points { r 1 , . . . , r n } correspond to the 

image pixels, each with a position r i ∈ R 

2 and a negative charge w i 

that is proportional to the intensity of the pixel. A number K > 3 of 

cluster centers are randomly initialized and the algorithm iterates 

according to Eqs. (1) and ( 2 ). After reaching equilibrium, the next 

step is to identify which of the K centers (or clusters) overlaps with 

the tumor, which can be estimated by simply selecting the center 

with the largest total charge, i.e., largest W i . 

In [23] we applied the potential- K -means method [24] to the 

tumor center localization problem. We viewed the intensity of a 

pixel as equal to its “workload” and employed the potential- K - 

means method [24] , which generates a balanced distribution of the 

pixels into clusters of approximately equal total intensity. This bal- 

ancing requirement introduced a search bias that tended to gen- 

erate either small clusters of higher intensity pixels, which over- 

lap with the tumor area, or large clusters of lower intensity pix- 

els. In [25] , we proposed Potential Field Clustering, which is based 

on an analogy with the concept of potential field in Physics, and 

also employed it for tumor center localization. The center of a tu- 

mor was localized and, as in [21] , then used as the initial seed in 

a region growing segmentation algorithm. In this paper, we refer 

to this combination of region growing segmentation with Potential 

Field Clustering [25] for seed initialization, as the PFC method. 

For a given MRI, let S 1 , S 2 , . . . , S n be the segmented images 

generated by n different segmentation algorithms. Each of the n 

segmentation algorithms is capturing the same MRI but, because 

they are using different segmentation criteria and focusing on dif- 

ferent characteristics/properties, the resulting segmented images 

S 1 , S 2 , . . . , S n also have different characteristics/properties and seg- 

mentation results. However, because they use the same input, i.e., 

same MRI image, they also contain redundant and complementary 

information about the observed tissue abnormality. The different 

but complementary information from the n segmented images can 

then be fused into a single fused segmented image S f used by em- 

ploying a particular fusion rule that combines, e.g., pixel-level in- 

formation, from the n segmented images. 

In this paper we build on our previous work on Potential Field 

Clustering [25] and develop a stand-alone brain tumor segmenta- 

tion algorithm, Potential Field Segmentation (PFS). We also propose 

the use of an ensemble of segmentation methods that includes 

PFS, FOR, and PFC to achieve a consensus segmentation that com- 

bines data from the multiple alternative segmentation results. That 

is, the segmented images S PF S , S F OR , S PF C are fused into a single 

fused image by using different fusing rules. The rest of this paper 

is organized as follows. The proposed PFS method, as well as the 

ensemble approaches, are presented in Sections 2 and 3 respec- 
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