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a b s t r a c t 

A sensor integration framework should be sufficiently general to accurately represent many sensor modal- 

ities, and also be able to summarize information in a faithful way that emphasizes important, actionable 

information. Few approaches adequately address these two discordant requirements. The purpose of this 

expository paper is to explain why sheaves are the canonical data structure for sensor integration and 

how the mathematics of sheaves satisfies our two requirements. We outline some of the powerful infer- 

ential tools that are not available to other representational frameworks. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

There is increasing concern within the data processing commu- 

nity about “swimming in sensors and drowning in data,” [1] be- 

cause unifying data across many disparate sources is difficult. This 

refrain is repeated throughout many scientific disciplines, because 

there are few treatments of unified models for complex phenom- 

ena and it is difficult to infer these models from heterogeneous 

data. 

A sensor integration framework should be (1) sufficiently gen- 

eral to accurately represent all sensors of interest, and also (2) be 

able to summarize information in a faithful way that emphasizes 

important, actionable information. Few approaches adequately ad- 

dress these two discordant requirements. Models of specific phe- 

nomena fail when multiple sensor types are combined into a com- 

plex network, because they cannot assemble a global picture con- 

sistently. Bayesian or network theory tolerate more sensor types, 

but suffer a severe lack of sophisticated analytic tools. 

The mathematics of sheaves partially addresses our two re- 

quirements and provides several powerful inferential tools that 

are not available to other representational frameworks. This article 

presents (1) a sensor-agnostic measure of data consistency, (2) a 

sensor-agnostic optimization method to fuse data, and (3) sensor- 

agnostic detection of possible “systemic blind spots.” In this arti- 

cle, we show that sheaves provide both theoretical and practical 

tools to allow representations of locally valid datasets in which 

the datatypes and contexts vary. Sheaves therefore provide a com- 
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mon, canonical language for heterogeneous datasets. We show that 

sheaf-based fusion methods can combine disparate sensor modali- 

ties to dramatically improve target localization accuracy over tradi- 

tional methods in a series of examples, culminating in Example 24 . 

Sheaves provide a sensor-agnostic basis for identifying when in- 

formation may be inadvertently lost through processing, which we 

demonstrate computationally in Examples 30–32 . 

Other methods typically aggregate data either exclusively glob- 

ally (on the level of whole semantic ontologies) or exclusively lo- 

cally (through various maximum likelihood stages). This limits the 

kind of inferences that can be made by these approaches. For in- 

stance, the data association problem in tracking frustrates local ap- 

proaches (such as those based on optimal state estimation) and 

remains essentially unsolved in the general case. The analysis of 

sheaves avoids both of these extremes by specifying information 

where it occurs – locally at each data source – and then uses global 

relationships to constrain how these data are interpreted. 

The foundational and canonical nature of sheaves means that 

existing approaches that address aspects of the sensor integration 

problem space already illuminate some portion of sheaf theory 

without exploiting its full potential. In contrast to the generality 

that is naturally present in sheaves, existing approaches to com- 

bining heterogeneous quantitative and qualitative data tend to rely 

on specific domain knowledge on small collections of data sources. 

Even in the most limited setting of pairs quantitative data sources, 

considerable effort has been expended in developing models of 

their joint behavior. Our approach leverages these pairwise mod- 

els into models of multiple-source interaction. Additionally, where 

joint models are not yet available, sheaf theory provides a context 

for understanding the properties that such a model must have. 
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Fig. 1. The sheaf-based multi-sensor workflow. 

1.1. Contribution 

Sometimes data fusion is described methodologically, as it is in 

the Joint Directors of Laboratories (JDL) model [2,3] , which defines 

operationally-relevant “levels” of data fusion. A more permissive 

– and more theoretically useful – definition was given by Wald 

[4] , “data fusion is a formal framework in which are expressed the 

means and tools for the alliance of data originating from different 

sources.” This article shows that this is precisely what is provided 

by sheaf theory, by carefully outlining the requisite background in 

sheaves alongside detailed examples of collections of sensors and 

their data. In Chapter 3 of Wald’s book [5] , the description of the 

implications of this definition is strikingly similar to what is pre- 

sented in this article. But we go further, showing that we obtain 

not just a full-fidelity representation of the data and its internal 

relationships, but also a jumping-off point for analysis of both the 

integrated sensor system and the data it produces. 

We make the distinction between “sensor integration” in which 

a collection of models of sensors are combined into a single uni- 

fied model (the integrated sensor system ), and “sensor data fusion”

in which observations from those sensors are combined. This ar- 

ticle presents the sheaf-based workflow outlined by Fig. 1 , which 

divides the process of working with sensors and their data into 

several distinct stages: 

1. Sensor integration unifies models of the individual sensors and 

their inter-relations into a single system model, which we will 

show has the mathematical structure of a sheaf . We emphasize 

that no sensor data are included in the sensor system model 

represented by the sheaf. 

2. Consistency radius computation uses the sheaf to quantify the 

level of self-consistency of a set of data supplied by the sen- 

sors. 

3. Data fusion takes the sheaf and data from the sensors to ob- 

tain a new dataset that is consistent across the sensor system 

through a constrained optimization. The consistency radius of 

the original data places a lower bound on the amount of dis- 

tortion incurred by the fusion process. 

4. Cohomology of the sheaf detects possible problems that could 

arise within the data fusion process. Although cohomology does 

not make use of any sensor data, it quantifies the possible im- 

pact that certain aspects of the data may have on the fusion 

process. 

Through a mixture of theory and detailed examples, we will 

show how this workflow presents solutions to four distinct prob- 

lem domains: 

1. Formalizing the description of an integrated sensor system as 

a well-defined mathematical entity (defined by Axioms 1 –6 in 

Section 3 ), 

2. Quantifying the internal consistency of the data from individual 

sensors (the consistency radius in Definition 20 in Section 4 ), 

3. Deriving globally consistent data from the data provided by 

the entire collection of sensors (solving Problem 19 , sheaf-based 

data fusion in Section 4 ), and 

4. Measuring the impact of the relationships between sensors 

on what data will be deemed consistent (using cohomology in 

Section 5 ). 

1.2. Historical context 

There are essentially two threads of research in the literature 

on data fusion: (1) physical sensors that return structured, nu- 

merical data (“hard” fusion), and (2) unstructured, semantic data 

(“soft” fusion) [6] . Hard fusion is generally performed on spatially- 

referenced data (for example, images), while soft fusion is gener- 

ally referenced to a common ontology. Especially in hard fusion, 

the spatial references are taken to be absolute. Most sensor fu- 

sion is performed on a pixel-by-pixel basis amongst sensors of 

the same physical modality (for instance [7–9] ). It generally re- 

quires image registration [10] as a precondition, especially if the 

sensors have different modalities (for instance [11,12] ). When im- 

age extents overlap but are not coincident, mosaics are the result- 

ing fused product. These are typically based on pixel- or patch- 

matching methods (for instance [13] ). Because these methods look 

for areas of close agreement, they are inherently sensitive to differ- 

ences in physical modality. It can be difficult to extend these ideas 

to heterogeneous collections of sensors. 

Like hard fusion, soft fusion requires registration amongst dif- 

ferent data sources. However, since there is no physically-apparent 

“coordinate system,” soft fusion must proceed without one. There 

are a number of approaches to align disparate ontologies into a 

common ontology [14–17] , against which analysis can proceed. 

There, most of the analysis derives from a combination of tools 

from natural language processing (for instance [18–20] ) and ar- 

tificial intelligence (like the methods discussed in [21–23] ). That 

these approaches derive from theoretical logic, type theory, and re- 

lational algebras is indicative of deeper mathematical foundations. 

These three topics have roots in the same category theoretic ma- 

chinery that drives the sheaf theory discussed in this article. 

Weaving the two threads of hard and soft fusion is difficult 

at best, and is usually approached statistically, as discussed in 

[24–26] . Unfortunately, this “clouds” the issue. If a stochastic data 

source is combined with another data source (deterministic or 

not), stochastic analysis asserts that the result will be stochastic. 

This viewpoint is quite effective in multi-target tracking [27,28] or 

in event detection from social media feeds [29] , where there are 

sufficient data to estimate probability distributions. But if two de- 

terministic data sources are combined, one numeric and one tex- 

tual, why should the result be stochastic ? 

Regardless of this conundrum, information theoretic or possi- 

bilistic approaches seem to be natural and popular candidates for 

performing sensor integration, for instance [30–32] . They are actu- 

ally subsumed by category theory [33,34] and arise naturally when 

needed. These models tend to rely on the homogeneity of sensors 

in order to obtain strong theoretical results. Sheaf theory extends 

the reach of these methods by explaining that the most robust 

aspects of networks tend to be topological in nature. For exam- 

ple, one of the strengths of Bayesian methods is that strong con- 

vergence guarantees are available. However, when applied to data 

sources arranged in a feedback loop, Bayesian updates can con- 

verge to the wrong distribution or not at all! [35] The fact that this 

is possible is witnessed by the presence of a topological feature –

a loop – in the relationships between sources. 

Sheaf theory provides canonical computational tools that sit on 

the general framework and has been occasionally [36–38] used in 

applications. Unfortunately, it is often difficult to get the general 

machine into a systematic computational tool. Combinatorial ad- 
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