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a b s t r a c t 

To aggregate diverse learners and to train deep architectures are the two principal avenues towards in- 

creasing the expressive capabilities of neural networks. Therefore, their combinations merit attention. 

In this contribution, we study how to apply some conventional diversity methods –bagging and label 

switching– to a general deep machine, the stacked denoising auto-encoding classifier, in order to solve a 

number of appropriately selected image recognition problems. The main conclusion of our work is that 

binarizing multi-class problems is the key to obtain benefit from those diversity methods. 

Additionally, we check that adding other kinds of performance improvement procedures, such as pre- 

emphasizing training samples and elastic distortion mechanisms, further increases the quality of the re- 

sults. In particular, an appropriate combination of all the above methods leads us to reach a new absolute 

record in classifying MNIST handwritten digits. 

These facts reveal that there are clear opportunities for designing more powerful classifiers by means 

of combining different improvement techniques. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The number of available training samples limits the expressive 

capability of traditional one-hidden layer perceptrons, or shallow 

Multi-Layer Perceptrons (MLPs), for practical applications, in spite 

of their theoretically unbounded approximation capacities [1,2] . 

Consequently, a lot of attention is being paid to architecture and 

parameterization procedures that allow to improve their perfor- 

mance when solving practical problems. The most relevant proce- 

dures increase the number of the trainable weights following two 

main avenues: Building ensembles of learning machines, or con- 

structing Deep Neural Networks (DNNs). 

Most of the advances in DNN design correspond to the last 

decade. In fact, prior to 2006 the only successfully used DNNs were 

the Convolutional Neural Network (CNN) classifiers [3] , whose sig- 

nificantly simplified structure makes possible their training by 

means of conventional algorithms such as Back Propagation (BP). 

This architecture is appropriate for some kinds of applications, 

those in which the samples show translation-invariant character- 

istics, for example, image processing. But direct training of gen- 

eral form DNNs remained without solution because the appearance 

of vanishing or exploding derivatives [4,5] . In 2006 Hinton et al. 

[6] proposed a deep classifier indirect design that involved the 
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stacking of Reduced Boltzmann Machines (RBMs) [7] . A top layer 

task-oriented training and overall refining complete these classi- 

fiers, that have come to be called Deep Belief Machines (DBMs). 

Contrastive divergence algorithms allow for the training of the 

DBMs without a huge computational effort [8] . 

Some years later, Vincent et al. [9] introduced a similar pro- 

cedure consisting of an expansive, denoising auto-encoder layer- 

wise training plus the final top classification and refining. These 

are the Stacked Denoising Auto-Encoder (SDAE) classifiers. It is 

worth mentioning that both DBMs and SDAEs are representation 

machines [10] , i.e., their hidden layers provide more and more so- 

phisticated high-level feature representations of the input vectors. 

These representations can be useful for analysis purposes [11] , and, 

even more, the representation process induces a disentangling of 

the sub-spaces in which the samples appear [12] . On the other 

hand, another sequentially trainable deep architecture, the Deep 

Stacking Networks (DSNs), was introduced in [13,14] , following the 

idea of training shallow MLPs and adding their outputs to the in- 

put vector for training further units. Finally, a number of modifi- 

cations that reduce the difficulties with the derivatives have been 

proposed for training directly DNNs, such as data conscious initial- 

izations [15] , Hessian-free search [16] , mini-batch iterations [17] , 

non-sigmoidal activations [18] , and adding scale and location train- 

able parameters [19] . 

There are also proofs of universal approximation capabilities for 

DNNs [20,21] , as well as of some interesting characteristics of them 
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[22] . The analyses in [23,24] show that by adding layers to a net- 

work, it is possible to reduce the effort to establish input-output 

correspondences. In practice, DNNs have offered excellent perfor- 

mance results in many applications, therefore, one can conclude 

they are important in spite of the large number of parameters that 

need to be learned. There is not room here to give more details, so, 

the interested reader is referred to excellent tutorials [4,5,25] for 

more extensive reviews and bibliography, as well as to [26] for a 

bibliography of applications. 

Ensembles are the second option to effectively increase the ex- 

pressive capability of learning machines, including MLPs. They are 

built by means of training learners that consider the problem to 

be solved from different perspectives, i.e., under a principle of di- 

versity, and aggregating their outputs to obtain an improved solu- 

tion. We present a very concise overview of ensembles, emphasiz- 

ing just the design methods that we will use in our experiments, 

in Section 2 , for the sake of continuity in this Introduction. 

Since both diversity and depth increase the expressive power of 

MLPs but through very different mechanisms, it seems reasonable 

to expect that a combination of them would lead to an even bet- 

ter performance. However, there are a moderate number of contri- 

butions along this research direction. We will briefly revise them 

in Section 4 , but we anticipate that some difficulties appear when 

trying to apply the usual ensemble building methods to multi-class 

problems, and, consequently, most of the DNN ensembles are con- 

structed by means of “ad hoc” procedures. 

In this paper, we explore and discuss in detail how and why di- 

versification can be applied to DNNs, as well as if including other 

improvement techniques gives additional advantage. The objective 

is to evaluate if it is possible to get significant advantages by com- 

bining diversification and deep learning, as well as other tech- 

niques. 

Of course, we have to select both DNN architectures and clas- 

sification problems for our experiments and subsequent analysis. 

Although most of the previous studies with the databases we will 

use have considered CNNs, we have decided to work with a less 

specific architecture to exclude the possibility of obtaining conclu- 

sions only valid for this particular form of DNN and the kind of 

problems that are appropriate for it. So, we select SDAE classifiers, 

and in particular the SDAE-3 design that is introduced in [9] . How- 

ever, at the same time and just to show the potential of combin- 

ing diversity and depth, we will address some traditional image 

classification tasks –also included in [9] ,– that are more appropri- 

ate for CNN architectures. The selected problems for our experi- 

ments will be the well-known 10-class handwritten digit MNIST 

database [3] , its version with a smaller training set MNIST-BASIC 

[9] , in order to analyze the relevance of the weak or strong char- 

acter of the SDAE-3 classifiers, and also the binary database RECT- 

ANGLES [9] , with the objective of studying the origin of the diffi- 

culties for creating ensembles of multi-class DNNs. We emphasize 

that these selections are not arbitrary: There are many published 

results for MNIST, for example in [27,28] , and clearly established 

records for representation DNNs, a 0.86% error rate [10] , and for 

CNN ensembles [29] , a 0.21% error rate. We anticipate from now 

that, with the help of a boosting-type training reinforcement or 

pre-emphasis, and a simple data augmentation besides of the bi- 

narization and training diversification we will apply, we arrive to 

a new absolute performance record, a 0.19% error rate. We repeat 

that this record was not our objective, but we looked for a better 

understanding of how to combine diversity and depth, and to avoid 

conclusions only valid for particular situations –using CNNs for im- 

age problems,– we select both SDAEs and the databases. Thus, in 

our opinion, there is no reason to think that our conclusions are 

problem- or architecture-dependent. 

The rest of the paper is structured as follows. In Section 2 , we 

present brief overviews of machine ensembles, both general forms 

and those that come from binarizing multi-class problems. We 

dedicate Section 4 to list and comment previously published works 

in designing DNN ensembles. Section 5 describes the additional 

techniques –pre-emphasis and data augmentation– we will use 

in the second part of our experiments. The experimental frame- 

work is detailed in Section 6 : Databases, deep learning units, di- 

versification and binarization techniques, and pre-emphasis and 

data augmentation forms. The results of the experiments appear 

in Section 7 following a sequential order, plus the corresponding 

discussions. Finally, the main conclusions of this work and some 

directions for further research close the paper. 

2. Ensembles 

To build an ensemble of diverse machines and aggregate their 

outputs is a way to increase expressive power. Although the first 

ideas on it were published half a century ago [30] , they have been 

mainly developed along the last two decades. In the following, 

we briefly review some ensemble techniques, including those we 

will use to diversify SDAEs. We dedicate separate sub-sections to 

designs that introduce diversification by means of architecture or 

training differences, that we will call conventional ensembles, and 

to ensembles that come from transforming a multi-class problem 

in a number of binary classifications from which the resulting class 

can be obtained. Since a complete review of ensembles is beyond 

the scope of this paper, the reader is referred to monographs [31–

34] , as well as to tutorial article [35] , which includes interesting 

perspectives on ensemble applications. 

2.1. Conventional ensembles 

Conventional diversification methods may be broadly classified 

into two categories. The first are those approaches that indepen- 

dently train a number of machines, usually with different train- 

ing sets. These machines, or learners, can also have different struc- 

tures. After it, learners’ outputs are aggregated –typically with sim- 

ple, non-trainable procedures– to come up with the final classifi- 

cation. These ensembles are called committees. 

Among committees, Random Forests (RFs) [36] are very pop- 

ular because they offer a remarkable performance. They diver- 

sify a number of tree classifiers by means of probabilistic branch- 

ing, which can be combined with sub-space projections. There are 

other committees that can be applied to general types of learn- 

ers, requiring only that they are unstable: Bagging [37] and label 

switching [38,39] . We will include both of them in our experi- 

ments because they are simple to implement and provide high ex- 

pressive power, clearly improving the performance of a single ma- 

chine. Yet we announce that the first experimental results will lead 

us to focus on the second. 

Bagging (“B ootstrap and agg regat ing ”) produces diversity by 

training the ensemble learners with bootstraping re-sampled ver- 

sions of the original training set and, then, aggregating these learn- 

ers’ outputs, usually by averaging them or with a majority vote. 

Bootstrap is a random sampling mechanism which includes re- 

placement to permit arbitrary sizes of the re-sampled population. 

Although its primitive form used bootstrapped sets of the same 

size as the true training set, to explore the size of these boot- 

strapped sets is important to find a good balance between compu- 

tational effort and number of learners and ensemble performance, 

because in some cases the reduction of the true samples that each 

learner sees can provoke losses. On the other hand, label switch- 

ing changes the labels of a given portion of the training samples 

according to some stochastic mechanism. We will employ the sim- 

plest version, for which these changes appear purely at random. 

The switching rate must be explored when designing these com- 

mittees. 
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